當前位置:首頁 » 操作系統 » c聚類演算法

c聚類演算法

發布時間: 2023-03-05 22:09:00

㈠ 用C語言實現聚類分析演算法或者是FCM演算法源程序

為什麼總有人在這里問這么麻煩的問題呢,會有人有耐心給你寫程序嗎

㈡ 模糊c-均值聚類演算法的FCM 演算法簡介

假設樣本集合為X={x1 ,x2 ,…,xn },將其分成c 個模糊組,並求每組的聚類中心cj ( j=1,2,…,C) ,使目標函數達到最小。

㈢ k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別

c均值和k均值演算法一樣嗎?它倆有什麼區別

㈣ 模糊c均值聚類中的隸屬度是什麼意思

模糊c-均值聚類演算法 fuzzy c-means algorithm (FCMA)或稱( FCM)。在眾多模糊聚類演算法中,模糊C-均值( FCM) 演算法應用最廣泛且較成功,它通過優化目標函數得到每個樣本點對所有類中心的隸屬度,從而決定樣本點的類屬以達到自動對樣本數據進行

㈤ 模糊C均值聚類演算法(FCM)

【嵌牛導讀】FCM演算法是一種基於劃分的聚類演算法,它的思想就是使得被劃分到同一簇的對象之間相似度最大,而不同簇之間的相似度最小。模糊C均值演算法是普通C均值演算法的改進,普通C均值演算法對於數據的劃分是硬性的,而FCM則是一種柔性的模糊劃分。

【嵌牛提問】FCM有什麼用?

【嵌牛鼻子】模糊C均值聚類演算法

【嵌牛正文】

聚類分析是多元統計分析的一種,也是無監督模式識別的一個重要分支,在模式分類、圖像處理和模糊規則處理等眾多領域中獲得最廣泛的應用。它把一個沒有類別標記的樣本按照某種准則劃分為若乾子集,使相似的樣本盡可能歸於一類,而把不相似的樣本劃分到不同的類中。硬聚類把每個待識別的對象嚴格的劃分某類中,具有非此即彼的性質,而模糊聚類建立了樣本對類別的不確定描述,更能客觀的反應客觀世界,從而成為聚類分析的主流。

模糊聚類演算法是一種基於函數最優方法的聚類演算法,使用微積分計算技術求最優代價函數,在基於概率演算法的聚類方法中將使用概率密度函數,為此要假定合適的模型,模糊聚類演算法的向量可以同時屬於多個聚類,從而擺脫上述問題。 模糊聚類分析演算法大致可分為三類:

1)分類數不定,根據不同要求對事物進行動態聚類,此類方法是基於模糊等價矩陣聚類的,稱為模糊等價矩陣動態聚類分析法。

2)分類數給定,尋找出對事物的最佳分析方案,此類方法是基於目標函數聚類的,稱為模糊C 均值聚類。

3)在攝動有意義的情況下,根據模糊相似矩陣聚類,此類方法稱為基於攝動的模糊聚類分析法。

我所學習的是模糊C 均值聚類演算法,要學習模糊C 均值聚類演算法要先了解慮屬度的含義,隸屬度函數是表示一個對象x 隸屬於集合A 的程度的函數,通常記做μA (x),其自變數范圍是所有可能屬於集合A 的對象(即集合A 所在空間中的所有點),取值范圍是[0,1],即0<=μA (x)<=1。μA (x)=1表示x 完全隸屬於集合A ,相當於傳統集合概念上的x ∈A 。一個定義在空間X={x}上的隸屬度函數就定義了一個模糊集合A ,或者叫定義在論域X={x}上的模糊子集A 。對於有限個對象x 1,x 2,……,x n 模糊集合A 可以表示為:A ={(μA (x i ), x i ) |x i ∈X } (6.1)

有了模糊集合的概念,一個元素隸屬於模糊集合就不是硬性的了,在聚類的問題中,可以把聚類生成的簇看成模糊集合,因此,每個樣本點隸屬於簇的隸屬度就是[0,1]區間裡面的值。

FCM 演算法需要兩個參數一個是聚類數目C ,另一個是參數m 。一般來講C 要遠遠小於聚類樣本的總個數,同時要保證C>1。對於m ,它是一個控制演算法的柔性的參數,如果m 過大,則聚類效果會很次,而如果m 過小則演算法會接近HCM 聚類演算法。演算法的輸出是C 個聚類中心點向量和C*N的一個模糊劃分矩陣,這個矩陣表示的是每個樣本點屬於每個類的隸屬度。根據這個劃分矩陣按照模糊集合中的最大隸屬原則就能夠確定每個樣本點歸為哪個類。聚類中心表示的是每個類的平均特徵,可以認為是這個類的代表點。從演算法的推導過程中我們不難看出,演算法對於滿足正態分布的數據聚類效果會很好。

通過實驗和演算法的研究學習,不難發現FCM演算法的優缺點:

首先,模糊c 均值泛函Jm 仍是傳統的硬c 均值泛函J1 的自然推廣。J1 是一個應用很廣泛的聚類准則,對其在理論上的研究已經相當的完善,這就為Jm 的研究提供了良好的條件。

其次,從數學上看,Jm與Rs的希爾伯特空間結構(正交投影和均方逼近理論) 有密切的關聯,因此Jm 比其他泛函有更深厚的數學基礎。

最後,FCM 聚類演算法不僅在許多鄰域獲得了非常成功的應用,而且以該演算法為基礎,又提出基於其他原型的模糊聚類演算法,形成了一大批FCM類型的演算法,比如模糊c線( FCL) ,模糊c面(FCP) ,模糊c殼(FCS) 等聚類演算法,分別實現了對呈線狀、超平面狀和「薄殼」狀結構模式子集(或聚類) 的檢測。

模糊c均值演算法因設計簡單,解決問題范圍廣,易於應用計算機實現等特點受到了越來越多人的關注,並應用於各個領域。但是,自身仍存在的諸多問題,例如強烈依賴初始化數據的好壞和容易陷入局部鞍點等,仍然需要進一步的研究。

㈥ 誰有模糊c均值聚類演算法的代碼

模糊c均值聚類
函數: fcm
格式: [center,U,obj_fcn] = fcm(data,cluster_n)
舉例如下所示:
data = rand(100, 2);
[center,U,obj_fcn] = fcm(data, 2);
plot(data(:,1), data(:,2),'o');
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
line(data(index1,1), data(index1, 2), 'linestyle', 'none', 'marker', '*', 'color', 'g');
line(data(index2,1), data(index2, 2), 'linestyle', 'none', 'marker', '*', 'color', 'r');

㈦ 模糊C均值聚類演算法研究

網頁優化策略的模糊C均值(FCM)聚類演算法研究

王玉龍 葉新銘 李秀華

摘 要:在對Web站點進行優化時,為了降低成本,往往需要在不改變硬體和網路配置的情況下提高網站的性能.此時,對構成網站的網頁的修改就成為提高站點性能的主要途徑.對網頁的訪問速度的測量已有很多成熟的方法,但是如何根據測試的結果指定合理的優化策略,卻鮮有論述.本文使用FCM演算法對測試結果和網站日誌進行聚類分析,從而得到一個良好的優化策略.
關鍵詞:Web;優化;模糊C均值(FCM);聚類演算法

Research on Fuzzy C-means Clustering Algorithm in Web Page Optimization Strategy

WANG Yu-Long YE Xin-Ming LI Xiu-Hua

基金項目:國家自然基金項目(60263002),內蒙古科技攻關項目(2002061002).
作者簡介:王玉龍 內蒙古大學計算機學院研究生.
作者簡介:葉新銘 內蒙古大學計算機學院教授.
作者簡介:李秀華 內蒙古大學計算機學院研究生.
作者單位:王玉龍(內蒙古大學計算機學院,呼和浩特,010021)
葉新銘(內蒙古大學計算機學院,呼和浩特,010021)
李秀華(內蒙古大學計算機學院,呼和浩特,010021)

參考文獻:

[1]An application of fuzzy clustering in group-positioning analysis [J]. Proc Natl Sci,Counc ROC(C) , 2000 ,10(2) :157~167
[2]Michalopoulos M,D ounias G D, Thomaidis N T. Decision making using fuzzy C-means and inctive machine learning for managing bank branches performance [EB/OL]. http:‖citeseer. nj. nec.com/458829. html, 2002
[3]Xie X, Beni G. A validity measure for fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(8):814~847
[4]Pal N R, Bezedek C. On cluster validity for the fuzzy c-Means model. IEEE Trans, 1995,3: 370~379
[5]Xie X L, Beni G. A validity measure for fuzzy clustering. IEEE Trans, 1991,13(8): 841~847
[6]於劍,程乾生.模糊聚類方法中的最佳聚類數的搜索范圍[J].中國科學(E輯),2002,32(2):274~280

出版日期:2005年10月25日

㈧ k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別

k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則;
模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本根據是「類內加權誤差平方和最小化」准則;
這兩個方法都是迭代求取最終的聚類劃分,即聚類中心與隸屬度值。兩者都不能保證找到問題的最優解,都有可能收斂到局部極值,模糊c均值甚至可能是鞍點。
至於c均值似乎沒有這么叫的,至少從我看到文獻來看是沒有。不必糾結於名稱。如果你看的是某本模式識別的書,可能它想表達的意思就是k均值。
實際上k-means這個單詞最先是好像在1965年的一篇文獻提出來的,後來很多人把這種聚類叫做k均值。但是實際上十多年前就有了類似的演算法,但是名字不一樣,k均值的歷史相當的復雜,在若干不同的領域都被單獨提出。追尋演算法的名稱與歷史沒什麼意義,明白具體的實現方法就好了。

㈨ 用c或者c++編程實現k-means cluster和分層聚類演算法

郵箱

熱點內容
紅米note擴展存儲卡 發布:2025-08-20 21:27:10 瀏覽:862
驗證你的電子郵件地址不能連接伺服器 發布:2025-08-20 21:27:09 瀏覽:63
存儲區是什麼意思 發布:2025-08-20 21:26:31 瀏覽:53
壓縮袋是什麼 發布:2025-08-20 20:48:27 瀏覽:618
伺服器減容會有什麼影響 發布:2025-08-20 20:40:23 瀏覽:150
我的世界怎麼聯伺服器 發布:2025-08-20 20:34:31 瀏覽:498
c語言編譯或解釋 發布:2025-08-20 20:27:17 瀏覽:601
vsm編程 發布:2025-08-20 20:16:31 瀏覽:913
腳本刷黑石塔 發布:2025-08-20 19:50:08 瀏覽:982
網上學編程可靠嗎 發布:2025-08-20 19:45:13 瀏覽:650