linux函數參數
Ⅰ linux 下pthread_create函數參數問題
問題出在類型轉成指針上,和 tid_num應該沒關系。chat 參數應該是一個原型類似於下面的函數的函數:
void * function(void *arg)。 你不應該將chat函數強制轉換成 void *
Ⅱ Linux中semget函數的參數key和函數返回值的作用區別是什麼
key是給內核看的,不同進程用同一個key可以返回一個相同的ID
而返回值是給內核管理用的
二者一一對應,key給應用自由,返回的ID是為了內核管理方便
Ⅲ 在linux下,想用sleep函數實現延時五秒,應該怎麼設參數
使用許可權 : 所有使用者
使用方式 : sleep [--help] [--version] number[smhd]
說明 : sleep 可以用來將目前動作延遲一段時間
參數說明 :
--help : 顯示輔助訊息
--version : 顯示版本編號
number : 時間長度,後面可接 s、m、h 或 d
其中 s 為秒,m 為 分鍾,h 為小時,d 為日數
例子 :
顯示目前時間後延遲 1 分鍾,之後再次顯示時間 :
date;sleep 1m;date
這個命令更多應用於shell腳本編程里和程序里
如下面的一段程序:
應用程序:
復制代碼
代碼如下:
#include <syswait.h>
usleep(n) //n微秒
Sleep(n)//n毫秒
sleep(n)//n秒
驅動程序:
#include <linux/delay.h>
mdelay(n) //milliseconds 其實現
#ifdef notdef
#define mdelay(n) (\
{unsigned long msec=(n); while (msec--) udelay(1000);})
#else
#define mdelay(n) (\
(__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \
({unsigned long msec=(n); while (msec--) udelay(1000);}))
#endif
調用asm/delay.h的udelay,udelay應該是納秒級的延時
Dos:
sleep(1); //停留1秒
delay(100); //停留100毫秒
Windows:
Sleep(100); //停留100毫秒
Linux:
sleep(1); //停留1秒
usleep(1000); //停留1毫秒
每一個平台不太一樣,最好自己定義一套跨平台的宏進行控制
秒還是微秒?關於延時函數sleep()
因為要寫一段代碼,需要用到sleep()函數,在我印象中,sleep(10)好像是休眠10微秒,結果卻是休眠了10秒(在Linux下)。覺得很奇怪,因為頭兒也記得好像是微秒為單位的。所以就查了一下。
原來linux下的sleep函數原型為:
unsigned int sleep(unsigned int seconds);
而MFC中的Sleep函數原型為:
void Sleep(DWORD dwMilliseconds);
也就是說,Linux下(使用的gcc的庫),sleep()函數是以秒為單位的,sleep(1);就是休眠1秒。而MFC下的sleep()函數是以微秒為單位的,sleep(1000);才是休眠1秒。原來如此啊。而如果在Linux下也用微妙為單位休眠,可以使用線程休眠函數:void usleep(unsigned long usec);當然,使用的時候別忘記#include <system.h>哦。
另外值得一提的是,linux下還有個delay()函數,原型為extern void delay(unsigned int msec);它可以延時msec*4毫秒,也就是如果想延時一秒鍾的話,可以這么用 delay(250);
Ⅳ linux c變參函數參數類型不同怎麼辦
寫一個簡單的可變參數的C函數
下面我們來探討如何寫一個簡單的可變參數的C函數.寫可變參數的
C函數要在程序中用到以下這些宏:
void va_start( va_list arg_ptr, prev_param );
type va_arg( va_list arg_ptr, type );
void va_end( va_list arg_ptr );
va在這里是variable-argument(可變參數)的意思.
這些宏定義在stdarg.h中,所以用到可變參數的程序應該包含這個
頭文件.下面我們寫一個簡單的可變參數的函數,改函數至少有一個整數
參數,第二個參數也是整數,是可選的.函數只是列印這兩個參數的值.
void simple_va_fun(int i, ...)
{
va_list arg_ptr;
int j=0;
va_start(arg_ptr, i);
j=va_arg(arg_ptr, int);
va_end(arg_ptr);
printf("%d %d\n", i, j);
return;
}
我們可以在我們的頭文件中這樣聲明我們的函數:
extern void simple_va_fun(int i, ...);
我們在程序中可以這樣調用:
simple_va_fun(100);
simple_va_fun(100,200);
從這個函數的實現可以看到,我們使用可變參數應該有以下步驟:
1)首先在函數里定義一個va_list型的變數,這里是arg_ptr,這個變
量是指向參數的指針.
2)然後用va_start宏初始化變數arg_ptr,這個宏的第二個參數是第
一個可變參數的前一個參數,是一個固定的參數.
3)然後用va_arg返回可變的參數,並賦值給整數j. va_arg的第二個
參數是你要返回的參數的類型,這里是int型.
4)最後用va_end宏結束可變參數的獲取.然後你就可以在函數里使
用第二個參數了.如果函數有多個可變參數的,依次調用va_arg獲
取各個參數.
如果我們用下面三種方法調用的話,都是合法的,但結果卻不一樣:
1)simple_va_fun(100);
結果是:100 -123456789(會變的值)
2)simple_va_fun(100,200);
結果是:100 200
3)simple_va_fun(100,200,300);
結果是:100 200
我們看到第一種調用有錯誤,第二種調用正確,第三種調用盡管結果
正確,但和我們函數最初的設計有沖突.下面一節我們探討出現這些結果
的原因和可變參數在編譯器中是如何處理的.
(二)可變參數在編譯器中的處理
我們知道va_start,va_arg,va_end是在stdarg.h中被定義成宏的,
由於1)硬體平台的不同 2)編譯器的不同,所以定義的宏也有所不同,下
面以VC++中stdarg.h里x86平台的宏定義摘錄如下(』\』號表示折行):
typedef char * va_list;
#define _INTSIZEOF(n) \
((sizeof(n)+sizeof(int)-1)&~(sizeof(int) - 1) )
#define va_start(ap,v) ( ap = (va_list)&v + _INTSIZEOF(v) )
#define va_arg(ap,t) \
( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
#define va_end(ap) ( ap = (va_list)0 )
定義_INTSIZEOF(n)主要是為了某些需要內存的對齊的系統.C語言的函
數是從右向左壓入堆棧的,圖(1)是函數的參數在堆棧中的分布位置.我
們看到va_list被定義成char*,有一些平台或操作系統定義為void*.再
看va_start的定義,定義為&v+_INTSIZEOF(v),而&v是固定參數在堆棧的
地址,所以我們運行va_start(ap, v)以後,ap指向第一個可變參數在堆
棧的地址,如圖:
高地址|-----------------------------|
|函數返回地址 |
|-----------------------------|
|....... |
|-----------------------------|
|第n個參數(第一個可變參數) |
|-----------------------------|<--va_start後ap指向
|第n-1個參數(最後一個固定參數)|
低地址|-----------------------------|<-- &v
圖( 1 )
然後,我們用va_arg()取得類型t的可變參數值,以上例為int型為例,我
們看一下va_arg取int型的返回值:
j= ( *(int*)((ap += _INTSIZEOF(int))-_INTSIZEOF(int)) );
首先ap+=sizeof(int),已經指向下一個參數的地址了.然後返回
ap-sizeof(int)的int*指針,這正是第一個可變參數在堆棧里的地址
(圖2).然後用*取得這個地址的內容(參數值)賦給j.
高地址|-----------------------------|
|函數返回地址 |
|-----------------------------|
|....... |
|-----------------------------|<--va_arg後ap指向
|第n個參數(第一個可變參數) |
|-----------------------------|<--va_start後ap指向
|第n-1個參數(最後一個固定參數)|
低地址|-----------------------------|<-- &v
圖( 2 )
最後要說的是va_end宏的意思,x86平台定義為ap=(char*)0;使ap不再
指向堆棧,而是跟NULL一樣.有些直接定義為((void*)0),這樣編譯器不
會為va_end產生代碼,例如gcc在linux的x86平台就是這樣定義的.
在這里大家要注意一個問題:由於參數的地址用於va_start宏,所
以參數不能聲明為寄存器變數或作為函數或數組類型.
關於va_start, va_arg, va_end的描述就是這些了,我們要注意的
是不同的操作系統和硬體平台的定義有些不同,但原理卻是相似的.
(三)可變參數在編程中要注意的問題
因為va_start, va_arg, va_end等定義成宏,所以它顯得很愚蠢,
可變參數的類型和個數完全在該函數中由程序代碼控制,它並不能智能
地識別不同參數的個數和類型.
有人會問:那麼printf中不是實現了智能識別參數嗎?那是因為函數
printf是從固定參數format字元串來分析出參數的類型,再調用va_arg
的來獲取可變參數的.也就是說,你想實現智能識別可變參數的話是要通
過在自己的程序里作判斷來實現的.
另外有一個問題,因為編譯器對可變參數的函數的原型檢查不夠嚴
格,對編程查錯不利.如果simple_va_fun()改為:
void simple_va_fun(int i, ...)
{
va_list arg_ptr;
char *s=NULL;
va_start(arg_ptr, i);
s=va_arg(arg_ptr, char*);
va_end(arg_ptr);
printf("%d %s\n", i, s);
return;
}
可變參數為char*型,當我們忘記用兩個參數來調用該函數時,就會出現
core mp(Unix) 或者頁面非法的錯誤(window平台).但也有可能不出
錯,但錯誤卻是難以發現,不利於我們寫出高質量的程序.
以下提一下va系列宏的兼容性.
System V Unix把va_start定義為只有一個參數的宏:
va_start(va_list arg_ptr);
而ANSI C則定義為:
va_start(va_list arg_ptr, prev_param);
如果我們要用system V的定義,應該用vararg.h頭文件中所定義的
宏,ANSI C的宏跟system V的宏是不兼容的,我們一般都用ANSI C,所以
用ANSI C的定義就夠了,也便於程序的移植.