演算法基準對比
❶ 八大演算法
演算法中比較常用的有八種演算法,基本演算法的題,都是依靠這些基礎演算法或者結合使用出題的,所以要學會基礎演算法,才有可能去更好的掌握演算法題。
插入排序,又叫直接插入排序。實際中,我們玩撲克牌的時候,就用了插入排序的思想。
基本思想:在待排序的元素中,假設前n-1個元素已有序,現將第n個元素插入到前面已經排好的序列中,使得前n個元素有序。按照此法對所有元素進行插入,直到整個序列有序。但我們並不能確定待排元素中究竟哪一部分是有序的,所以我們一開始只能認為第一個元素是有序的,依次將其後面的元素插入到這個有序序列中來,直到整個序列有序為止。
希爾排序,又稱縮小增量法。其基本思想是:
1>先選定一個小於N的整數gap作為第一增量,然後將所有距離為gap的元素分在同一組,並對每一組的元素進行直接插入排序。然後再取一個比第一增量小的整數作為第二增量,重復上述操作…
2>當增量的大小減到1時,就相當於整個序列被分到一組,進行一次直接插入排序,排序完成。
選擇排序,即每次從待排序列中選出一個最小值,然後放在序列的起始位置,直到全部待排數據排完即可。
如何進行堆排序呢?
步驟如下:
1、將堆頂數據與堆的最後一個數據交換,然後對根位置進行一次堆的向下調整,但是調整時被交換到最後的那個最大的數不參與向下調整。
2、完成步驟1後,這棵樹除最後一個數之外,其餘數又成一個大堆,然後又將堆頂數據與堆的最後一個數據交換,這樣一來,第二大的數就被放到了倒數第二個位置上,然後該數又不參與堆的向下調整…反復執行下去,直到堆中只有一個數據時便結束。此時該序列就是一個升序。
冒泡排序,該排序的命名非常形象,即一個個將氣泡冒出。冒泡排序一趟冒出一個最大(或最小)值。
快速排序是公認的排序之王,快速排序是Hoare於1962年提出的一種二叉樹結構的交換排序演算法,其基本思想為:
任取待排序元素序列中的某元素作為基準值,按照該基準值將待排序列分為兩子序列,左子序列中所有元素均小於基準值,右子序列中所有元素均大於基準值,然後左右序列重復該過程,直到所有元素都排列在相應位置上為止。
歸並排序是採用分治法的一個非常典型的應用。其基本思想是:將已有序的子序合並,從而得到完全有序的序列,即先使每個子序有序,再使子序列段間有序。
計數排序,又叫非比較排序。顧名思義,該演算法不是通過比較數據的大小來進行排序的,而是通過統計數組中相同元素出現的次數,然後通過統計的結果將序列回收到原來的序列中。
❷ 「DES」和「AES」演算法的比較,各自優缺點有哪些
DES演算法優點:DES演算法具有極高安全性,到目前為止,除了用窮舉搜索法對DES演算法進行攻擊外,還沒有發現更有效的辦法。
DES演算法缺點:
1、分組比較短。
2、密鑰太短。
3、密碼生命周期短。
4、運算速度較慢。
AES演算法優點:
1、運算速度快。
2、對內存的需求非常低,適合於受限環境。
3、分組長度和密鑰長度設計靈活。
4、 AES標准支持可變分組長度,分組長度可設定為32比特的任意倍數,最小值為128比特,最大值為256比特。
5、 AES的密鑰長度比DES大,它也可設定為32比特的任意倍數,最小值為128比特,最大值為256比特,所以用窮舉法是不可能破解的。
6、很好的抵抗差分密碼分析及線性密碼分析的能力。
AES演算法缺點:目前尚未存在對AES 演算法完整版的成功攻擊,但已經提出對其簡化演算法的攻擊。
(2)演算法基準對比擴展閱讀:
高級加密標准(英語:Advanced Encryption Standard,縮寫:AES),在密碼學中又稱Rijndael加密法,是美國聯邦政府採用的一種區塊加密標准。
這個標准用來替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,高級加密標准由美國國家標准與技術研究院(NIST)於2001年11月26日發布於FIPS PUB 197,並在2002年5月26日成為有效的標准。2006年,高級加密標准已然成為對稱密鑰加密中最流行的演算法之一。
❸ 幾種排序演算法的比較
一、八大排序演算法的總體比較
4.3、堆的插入:
每次插入都是將新數據放在數組最後。可以發現從這個新數據的父結點到根結點必然為一個有序的數列,然後將這個新數據插入到這個有序數據中
(1)用大根堆排序的基本思想
先將初始數組建成一個大根堆,此對為初始的無序區;
再將最大的元素和無序區的最後一個記錄交換,由此得到新的無序區和有序區,且滿足<=的值;
由於交換後新的根可能違反堆性質,故將當前無序區調整為堆。然後再次將其中最大的元素和該區間的最後一個記錄交換,由此得到新的無序區和有序區,且仍滿足關系的值<=的值,同樣要將其調整為堆;
..........
直到無序區只有一個元素為止;
4.4:應用
尋找M個數中的前K個最小的數並保持有序;
時間復雜度:O(K)[創建K個元素最大堆的時間復雜度] +(M-K)*log(K)[對剩餘M-K個數據進行比較並每次對最大堆進行從新最大堆化]
5.希爾排序
(1)基本思想
先將整個待排序元素序列分割成若乾子序列(由相隔某個「增量」的元素組成的)分別進行直接插入排序,然後依次縮減增量再進行排序,待整個序列中的元素基本有序(增量足夠小)時,再對全體元素進行一次直接插入排序(因為直接插入排序在元素基本有序的情況下,效率很高);
(2)適用場景
比較在希爾排序中是最主要的操作,而不是交換。用已知最好的步長序列的希爾排序比直接插入排序要快,甚至在小數組中比快速排序和堆排序還快,但在涉及大量數據時希爾排序還是不如快排;
6.歸並排序
(1)基本思想
首先將初始序列的n個記錄看成是n個有序的子序列,每個子序列的長度為1,然後兩兩歸並,得到n/2個長度為2的有序子序列,在此基礎上,再對長度為2的有序子序列進行兩兩歸並,得到若干個長度為4的有序子序列,以此類推,直到得到一個長度為n的有序序列為止;
(2)適用場景
若n較大,並且要求排序穩定,則可以選擇歸並排序;
7.簡單選擇排序
(1)基本思想
第一趟:從第一個記錄開始,將後面n-1個記錄進行比較,找到其中最小的記錄和第一個記錄進行交換;
第二趟:從第二個記錄開始,將後面n-2個記錄進行比較,找到其中最小的記錄和第2個記錄進行交換;
...........
第i趟:從第i個記錄開始,將後面n-i個記錄進行比較,找到其中最小的記錄和第i個記錄進行交換;
以此類推,經過n-1趟比較,將n-1個記錄排到位,剩下一個最大記錄直接排在最後;
❹ 介紹幾種壓縮演算法並做對比
首先說:這是我自己寫的,我拒絕抄別人的。
我很喜歡壓縮,7z是一個不錯的壓縮軟體。
首先說說7z後綴格式的這些東西,有LZMA LZMA2 PPMd BZIP2比你要知道的還多了一個。
首先說LZMA,很不錯,他對壓縮文件很優秀。建議使用。
PPMd,他的壓縮率並不高,但是他壓縮文檔可超出了LZMA,文檔指的是記事本一類文字保存文件。
BZIP2,他,沒有前面那兩位功能強大,但是32位和64位系統都兼容。
忘了說LZMA2了,他,真讓我失望。假如你的CPU是4核的,那麼你用4線程壓縮就會快一倍,但是那時你的CPU佔用率就達100%了
說完了
❺ 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
❻ 簡述各種排序演算法的優缺點
一、冒泡排序
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較a[1]與 a[2]的值,若a[1]大於a[2]則交換 兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比 較a[3]與a[4],以此 類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對a[1]~a[n- 1]以相同方法 處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理 n-1 輪 後a[1]、a[2]、……a[n]就以升序排列了。
優點:穩定;
缺點:慢,每次只能移動相鄰兩個數據。
二、選擇排序
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數 據元素排完。
選擇排序是不穩定的排序方法。
n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果:
①初始狀態:無序區為R[1..n],有序區為空。
②第1 趟排序 在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1 個記錄R[1]交換,使R[1..1]和R[2..n]分別變 為記錄個數增加1 個的新有序區和記錄個數減少1 個的新無序區。
③第i 趟排序
第i 趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n-1)。該趟 排序從當前無序區中選出關鍵字最 小的記錄 R[k],將它與無序區的第1 個記錄R 交換,使R[1..i]和R 分別變為記錄個數增加1 個的新有序區和記錄個數減少 1 個的新無序區。
這樣,n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果。
優點:移動數據的次數已知(n-1 次);
缺點:比較次數多。
三、插入排序
已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。 首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值, 若b[1]仍然大於a[2],則繼續跳過,直 到b[1]小於a 數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1 的數組a)
優點:穩定,快;
缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決 這個問題。
四、縮小增量排序
由希爾在1959 年提出,又稱希爾排序(shell 排序)。
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n 不大時,插入 排序的效果很好。首先取一增 量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……="" 列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操="" 作,直到d="1。"
優點:快,數據移動少;=""
缺點:不穩定,d="" 的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。=""
五、快速排序=""
快速排序是冒泡排序的改進版,是目前已知的最快的排序方法。
="" 已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據a[x]="" 作為基準。比較a[x]與其它數據並="" 排序,使a[x]排在數據的第k="" 位,並且使a[1]~a[k-1]中的每一個數="" 據a[x],然後采 用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。
優點:極快,數據移動少;
缺點:不穩定。
❼ 推薦演算法的主要推薦方法的對比
各種推薦方法都有其各自的優點和缺點,見表1。 表1 主要推薦方法對比 推薦方法優點缺點基於內容推薦推薦結果直觀,容易解釋;不需要領域知識 新用戶問題;復雜屬性不好處理;
要有足夠數據構造分類器 協同過濾推薦新異興趣發現、不需要領域知識;隨著時間推移性能提高;
推薦個性化、自動化程度高;
能處理復雜的非結構化對象 稀疏問題;可擴展性問題;
新用戶問題;
質量取決於歷史數據集;
系統開始時推薦質量差; 基於規則推薦能發現新興趣點;不要領域知識 規則抽取難、耗時;產品名同義性問題;
個性化程度低; 基於效用推薦無冷開始和稀疏問題;對用戶偏好變化敏感;
能考慮非產品特性 用戶必須輸入效用函數;推薦是靜態的,靈活性差;
屬性重疊問題; 基於知識推薦能把用戶需求映射到產品上;能考慮非產品屬性 知識難獲得;推薦是靜態的