定位穩定演算法
㈠ 求在進行多雷達精確定位時的一種定位演算法.
在實際情況中,往往使用更多雷達進行精確定位。在採用多基雷達進行飛行目標空中定位測量,主要為一發(T或T/R)多收(R)的多基系統,為集中式結構,
系統配置為一個主站(發射/接收)和三個分站(接收),主站與分站之間通過信號同步網路實現在時域、頻域、空域上的嚴格同步。空間同步採用數字波束形成(DBF)技術,工作於脈沖追趕方式或同時多波束方式,各站將所測得的目標數據通過數據傳輸網路傳輸到中處理機,進行點跡相關、定位與跟蹤處理。觀測模式為主站(T/R)發射雷達信號,並能測量目標距離 !或方位角 ,分站 測量距離差 方位角 或者其中之一的觀測量。在此種觀測模式下,目標的空間定位面為回轉雙曲面。因此我們設計了多基雷達目標定位演算法。具體演算法為:
設 為在笛卡兒坐標下某一地面站 的站址坐標,j=0,1,2,3. 為空中飛行目標的位置矢量, . 為飛行目標至地面站 的距離,j=0,1,2,3. 為主目標斜距觀測量與分站至目標斜距觀測量之差值。 ,其中 為主站與某一分站接收雷達反射信號的到達時間差i=1,2,3.
顯然,測量的斜距差 是空中飛行目標位置矢量 的函數,有
fj(r)=s0-sj-pj=0 (3)
sj=[(x-xj)^2+(y-yj)^2+(z-zj)^2]^1/2
要獲得空中目標三維位置矢量 ,利用每一時刻測得的3個 值,
可得到如(3)式所示的三個獨立方程,用矩陣表達式為 ,其中,f(r)=[f1(r) f2(r) f3(r)]^T .
要從上述非線性測量方程中獲得精確的空間目標位置估計值,一個比較通用的方法是作泰勒級數展開,先給出一個飛行目標的初始估值 作為一個參考點,然後將測量函數 在 處作泰勒展開並進行線性化處理,有f (r)=f|r0+G|r0*(r-r0) (4)
式中,G是雅克比矩陣,定義為 .由(3)式和(4)式又可獲得空間目標位置矢量新的估計值 r=r0-G^-1*f|r0 (5)
然後,再將求出的估計值 作為新的初值,重復上述過程,又可獲得在 處的空中目標位置矢量估計 ,這樣重復對目標位置進行迭代計,直到使估計值均方誤差滿足要求的精度。在上述過程中,由於採用了泰勒級數展開,存在一個線性化模型誤差。在實際解算時,也可以根據測量位置精度要求設置泰勒級數展開的階數,從而使得模型化誤差小得可以忽略。
㈡ 求 :RFID定位演算法
RFID 用來定位 很難的 定位受環境影響很大的
有源2.4G的有反射折射等等 無源的倒是好一點 但是距離近 成本高
㈢ 藍牙室內定位,與Wi-Fi定位及UWB定位區別是
一、Wi-Fi室內定位技術
簡單來說,Wi-Fi室內定位技術採用的是三點定位的方式,即通過移動接收設備以及三個Wi-Fi網路接入點的無線信號來確定移動接收設備的位置。由於三個Wi-Fi網路接入點距離移動接收設備的距離有所不同,所以通過一定的演算法,就能夠十分精確地確定移動接收設備的位置。
精度:WIFI定位3-15米,藍牙定位2-3米,UWB定位10-30厘米
功耗:BLE藍牙技術功耗更低
通過以上的對比,就可以看出基於低功耗藍牙技術的室內定位更穩定、更安全、性價比更高。基於UWB定位技術的室內定位精度更高,需布設的UWB基站更少。
定位硬體:顧名思義,藍牙室內定位方案的實現必然是建立在藍牙室內定位產品的基礎上,主要定位硬體包括藍牙網關、藍牙Beacon、手環、手錶等藍牙標簽以及智能手機、無線區域網及後端數據伺服器等。UWB定位硬體產品主要包括定位引擎伺服器、智能終端、POE交換機、UWB基站、UWB標簽、UWB模塊、軟體介面等。
應用領域:藍牙定位主要應用於對人、物定位精度要求一般的室內定位,用於在一定空間范圍內獲取人或物的大致位置信息;UWB定位則主要應用於室內高精度定位,用於在一定空間范圍內獲取人或物的精確位置信息。
定位環境搭建:藍牙定位布局相對簡單,只要注意間隔范圍就可以了,UWB定位布局相比藍牙定位要復雜一些,因為涉及到UWB基站的安裝。
最後,小編將SKYLAB室內定位工程師總結的各個領域室內定位解決方案選擇要點告訴大家:室內定位從用途方向可以劃分消費類和工業類。消費類主要實現室內人員引導、消費推送、安全監控、智能家居等商業應用。工業類主要實現消防安全、人員監控、設備引導、財產安全、智能工廠等應用。有些是側重於單純的室內定位,而有些則更側重於導航功能、歷史軌跡、電子圍欄等功能,因此需要有針對性選擇方案。單純的室內定位、導航,對定位精度要求不高,可以優先選擇藍牙定位方案,側重歷史軌跡、電子圍欄這些功能則可以優先考慮UWB定位方案;希望能夠幫助到各位有室內定位方案需求的客戶們。
㈣ 目前行業內有哪些比較高精度的室內定位演算法和實現
目前室內定位常用的較高精度的定位方法,從原理上主要分為七種:鄰近探測法、質心定位法、多邊定位法、三角定位法、極點法、指紋定位法和航位推演算法。
一、鄰近探測法
通過一些有范圍限制的物理信號的接收,從而判斷移動設備是否出現在某一個發射點附近。該方法雖然只能提供大概的定位信息,但其布設成本低、易於搭建,適合於一些對定位精度要求不高的應用,例如自動識別系統用於公司的員工簽到。
二、質心定位法
根據移動設備可接收信號范圍內所有已知的信標(beacon)位置,計算其質心坐標作為移動設備的坐標。該方法易於理解,計算量小,定位精度取決於信標的布設密度。
三、多邊定位法
通過測量待測目標到已知參考點之間的距離,從而確定待測目標的位置。精度高、應用廣。
四、三角定位法
基於無線信號的三角測量定位演算法是室內定位演算法中非常常見的一種,三角測量定位演算法類似GPS衛星定位。實際定位過程中使用的是RSSI信號值衰減模型。原理是在無線信號強度在空間中傳播隨著距離衰減,而無線信號強度(RSSI值)對於定位標簽上的接收器來說是可測的,那麼依據測試到的信號強度,再根據信號衰減模型就可以反推出距離了。獲取待測目標相對2個已知參考點的角度後結合兩參考點間的距離信息可以確定唯一的三角形,即可確定待測目標的位置。基於三角測量定位演算法的定位方案是被動式藍牙定位方案和主被動一體式藍牙定位方案。
五、極點法
通過測量相對某一已知參考點的距離和角度從而確定待測點的位置。該方法僅需已知一個參考點的位置坐標,因此使用非常方便,已經在大地測量中得到廣泛應用。
六、指紋定位法
在定位空間中建立指紋資料庫,通過將實際信息與資料庫中的參數進行對比來實現定位。指紋定位的優勢是幾乎不需要參考測量點,定位精度相對較高;但缺點是前期離線建立指紋庫的工作量巨大,同時很難自適應於環境變化較大的場景。
七、航位推演算法
是在已知上一位置的基礎上,通過計算或已知的運動速度和時間計算得到當前的位置。數據穩定,無依賴,但該方法存在累積誤差,定位精度隨著時間增加而惡化。
㈤ 室內定位技術實現精確定位的原理是什麼
室內定位是指在室內環境中實現位置定位,由於GPS和北斗在室內信號會受干擾,從而導致無法精準定位,所以現在室內定位主要採用的是無線通訊、基站定位、慣導定位等多種技術集成形成一套室內位置定位體系,從而實現人員、物體等在室內空間中的位置監控。現在室內定位技術主要有:超寬頻技術、WiFi技術、藍牙技術、超聲波技術、射頻識別技術等。而今天我們要講的是UWB超寬頻室內定位技術。
UWB(Ultra Wideband)超寬頻是一種不用載波,而採用時間間隔極短(小於1ns)的脈沖進行通信的技術,也稱做脈沖無線電( Impulse Radio)、時域(Time Domain)或無載波(Carrier Free)通信。
UWB相比其他室內定位技術有什麼優勢?
1、抗干擾性能強;
2、傳輸速率高,可以達到幾十Mbit/s到幾百Mbit/s;
3、帶寬極寬,UWB使用的帶寬在1GHz以上,高達幾個GHz;
4、消耗電能小;
5、定位精確,能達厘米級。
6、工程簡單造價便宜。
UWB的定位技術原理:
其實UWB的定位原理和衛星導航定位原理很相似。如下圖,天上的衛星坐標為已知,地上的接收設備同時接收到四個衛星信號就能確定自己的位置坐標(平面和高程坐標)。UWB的定位原理就是通過在室內布置4個已知坐標的定位基站,需要定位的人員或者設備攜帶定位標簽,標簽按照一定的頻率發射脈沖,不斷和四個已知位置的基站進行測距,通過一定的演算法精確的計算定位標簽的位置。
三維定位布置
三維定位布置
㈥ 汽車當前位置演算法的定義是什麼
為使汽車保持穩定直線行駛,轉向輕便,減少汽車在行使中輪胎和轉向機件的磨損、前輪、轉向主銷、前軸三者之間的安裝具有一定的相對位置,這就叫做「前輪定位」。它包括前輪外傾、前輪前速速、轉向節主銷內傾和轉向節主校後傾。
定位演算法是指為獲得導彈飛行實時位置所研究的計算方法。定位演算法通常利用各種信息源,例如可見光源、紅外源、微波源及地貌起伏等製作圖像。利用上述圖像的可識別性來實現飛行器定位。
定位演算法通常利用各種信息源,例如可見光源、紅外源、微波源及地貌起伏等製作圖像。利用上述圖像的可識別性來實現飛行器定位。