圖匹配演算法
A. 詳細講解二分圖匹配中的Hopcroft-Karp演算法
#include <iostream>#include <cstring>#include <cstdio>#include <algorithm>using namespace std; typedef long long ll;const int M = 550; struct node{ int u, v, f, next;}a[5000]; // 需要至少4000,開到5000比較穩int H[1100], d[1100], c[1100];int n, m, cnt;int S, T, N; void add(int u, int v, int f){ a[cnt].u = u; a[cnt].v = v; a[cnt].f = f; a[cnt].next = H[u]; H[u] = cnt++;} void build(int u, int v, int f){ add(u, v, f); add(v, u, 0);} int dfs(int u, int flow){ if (u == T) return flow; int res = 0, tt, detla; for (tt = H[u]; ~tt; tt = a[tt].next){ int v = a[tt].v; int f = a[tt].f; // f > 0才能算 if (f>0&&d[u] == d[v] + 1){ detla = dfs(v, min(f, flow)); a[tt].f -= detla; a[tt ^ 1].f += detla; flow -= detla; res += detla; if (!flow) break; } } if (!res){ if (!--c[d[u]]) d[S] = N; ++c[++d[u]]; } return res;} void isap(){ int i, j; memset(d, 0, sizeof(d)); memset(c, 0, sizeof(c)); c[0] = N; int ans = 0; while (d[S] < N){ ans += dfs(S, INT_MAX >> 2); } printf("%d\n", ans);} int main(){ int k, i, j, t; while (~scanf("%d", &t), t){ scanf("%d%d", &n, &m); memset(H, -1, sizeof(H)); cnt = 0; int u, v; S = 1; T = n + m + 2; N = T; // 從S到女生的邊 for (i = 1; i <= n; i++) { build(S, i + 1, 1); } // 從男生到T的邊 for (i = 1; i <= m; i++) { build(n + 1 + i, T, 1); } for (i = 0; i < t; i++){ scanf("%d%d", &u, &v); // 從男生到女生的邊 // 修改前的代碼會多次創建S到女生的邊和男生到T的邊,造成了1個男生可以和多個女生匹配或者多個男生可以和1個女生匹配的錯誤 build(u + 1, v + n + 1, 1); } isap(); } return 0;}
B. 如何實現兩張圖片的匹配
一、特徵點(角點)匹配
圖像匹配能夠應用的場合非常多,如目標跟蹤,檢測,識別,圖像拼接等,而角點匹配最核心的技術就要屬角點匹配了,所謂角點匹配是指尋找兩幅圖像之間的特徵像素點的對應關系,從而確定兩幅圖像的位置關系。
角點匹配可以分為以下四個步驟:
1、提取檢測子:在兩張待匹配的圖像中尋找那些最容易識別的像素點(角點),比如紋理豐富的物體邊緣點等。
2、提取描述子:對於檢測出的角點,用一些數學上的特徵對其進行描述,如梯度直方圖,局部隨機二值特徵等。檢測子和描述子的常用提取方法有:sift,harris,surf,fast,agast,brisk,freak,brisk,brief/orb等。
3、匹配:通過各個角點的描述子來判斷它們在兩張圖像中的對應關系,常用方法如 flann等。
4、消噪:去除錯誤匹配的外點,保留正確的匹配點。常用方法有KDTREE,BBF,Ransac,GTM等。
二、SIFT匹配方法的提出
為了排除因為圖像遮擋和背景混亂而產生的無匹配關系的關鍵點,SIFT的作者Lowe提出了比較最近鄰距離與次近鄰距離的SIFT匹配方式:取一幅圖像中的一個SIFT關鍵點,並找出其與另一幅圖像中歐式距離最近的前兩個關鍵點,在這兩個關鍵點中,如果最近的距離除以次近的距離得到的比率ratio少於某個閾值T,則接受這一對匹配點。因為對於錯誤匹配,由於特徵空間的高維性,相似的距離可能有大量其他的錯誤匹配,從而它的ratio值比較高。顯然降低這個比例閾值T,SIFT匹配點數目會減少,但更加穩定,反之亦然。
Lowe推薦ratio的閾值為0.8,但作者對大量任意存在尺度、旋轉和亮度變化的兩幅圖片進行匹配,結果表明ratio取值在0. 4~0. 6 之間最佳,小於0. 4的很少有匹配點,大於0. 6的則存在大量錯誤匹配點,所以建議ratio的取值原則如下:
ratio=0. 4:對於准確度要求高的匹配;
ratio=0. 6:對於匹配點數目要求比較多的匹配;
ratio=0. 5:一般情況下。
三、常見的SIFT匹配代碼
1、vlfeat中sift toolbox中的vl_ubcmatch.c使用的是普通的歐氏距離進行匹配(該SIFT代碼貢獻自Andrea
Vedaldi)。
2、Lowe的C++代碼中使用的是歐氏距離,但是在matlab代碼中為了加速計算,使用的是向量夾角來近似歐氏距離:先將128維SIFT特徵向量歸一化為單位向量(每個數除以平方和的平方根),然後點乘來得到向量夾角的餘弦值,最後利用反餘弦(acos函數)求取向量夾角。實驗證明Lowe的辦法正確率和耗時都很不錯。
同樣,也可以採用knnsearch函數求最近點和次近點:knnsearch採用euclidean距離時得到的結果與lowe採用的近似方法結果幾乎一致,正好印證了模擬歐氏距離的效果。
3、Rob Hess的OpenSIFT採用了KDTREE來對匹配進行優化。
4、CSDN大神v_JULY_v實現了KDTREE+BBF對SIFT匹配的優化和消除錯誤匹配:從K近鄰演算法、距離度量談到KD樹、SIFT+BBF演算法
- 結構之法 演算法之道 - 博客頻道 - CSDN.NET。
5、OpenCV中features2d實現的SIFT匹配有多種matcher:VectorDescriptorMatcher,BFMatcher(Brute-force descriptor matcher),FernDescriptorMatcher,OneWayDescriptorMatcher,FlannBasedMatcher 等等。目前只知道採用knnsearch,提供了多種距離度量方式,具體區別不懂。
C. 求一般圖的最大權匹配的演算法(最好詳細一些,注意數最大權匹配),高分求助!
Algorithmus 3.3 Kruskal's Algorithm 時間復雜度 O(mlog n)
m邊數 n點數
輸入: 圖 G = (V;E) 和 權c : E -》R.
輸出: 一棵最優樹 T.
begin
把所有邊以權的大小按從小到大排序
T := (VG,ET ) := (VG, 空);
for i = 1 to m do
if T + ei 沒有圈 then
T := (VG;ET 並上 {ei});
if end
for end
end
或者 Algorithmus 3.5 Prim's Algorithm 時間復雜度O(m+n log n)
D. sift演算法是什麼
Sift演算法是David Lowe於1999年提出的局部特徵描述子,並於2004年進行了更深入的發展和完善。Sift特徵匹配演算法可以處理兩幅圖像之間發生平移、旋轉、仿射變換情況下的匹配問題,具有很強的匹配能力。
這一演算法的靈感也十分的直觀,人眼觀測兩張圖片是否匹配時會注意到其中的典型區域(特徵點部分),如果我們能夠實現這一特徵點區域提取過程,再對所提取到的區域進行描述就可以實現特徵匹配了。
sift演算法的應用
SIFT演算法目前在軍事、工業和民用方面都得到了不同程度的應用,其應用已經滲透了很多領域,典型的應用如下:物體識別;機器人定位與導航;圖像拼接;三維建模;手勢識別;視頻跟蹤;筆記鑒定;指紋與人臉識別;犯罪現場特徵提取。
E. 雙目視覺的匹配演算法是不是有好幾種具體是哪幾種
與普通的圖像模板匹配不同的是,立體匹配是通過在兩幅或多幅存在視點差異、幾何畸變、灰度畸變、雜訊干擾的圖像對之間進行的,不存在任何標准模板進行匹配。立體匹配方法一般包含以下三個問題:(1)基元的選擇,即選擇適當的圖像特徵如點、直線、相位等作為匹配基元;(2)匹配的准則,將關於物理世界的某些固有特徵表示為匹配所必須遵循的若干規則,使匹配結果能真實反映景物的本來面目;(3)演算法結構,通過利用適當的數學方法設計能正確匹配所選擇基元的穩定演算法。
根據匹配基元的不同,立體視覺匹配演算法目前主要分為三大類,即區域匹配、相位匹配和特徵匹配:
基於區域灰度的匹配演算法是把一幅圖像(基準圖)中某一點的灰度鄰域作為模板,在另一幅圖像(待匹配圖)中搜索具有相同(或相似)灰度值分布的對應點鄰域,從而實現兩幅圖像的匹配。這類演算法的性能取決於度量演算法及搜索策略的選擇。另外,也必須考慮匹配窗口大小、形式的選擇,大窗口對於景物中存在的遮擋或圖像不光滑的情況會更多的出現誤匹配,小窗口則不具有足夠的灰度變化信息,不同的窗口形式對匹配信息也會有不同的影響。因此應該合理選取匹配區域的大小和形式來達到較好的匹配結果。
相位匹配是近二十年發展起來的一種匹配演算法,相位作為匹配基元,即認為圖像對中的對應點局部相位是一致的。最常用的相位匹配演算法有相位相關法和相位差——頻率法,雖然該方法是一種性能穩定、具有較強的抗輻射抗透視畸變能力、簡單高效、能得到稠密視差圖的特徵匹配方法。但是,當局部結構存在的假設不成立時,相位匹配演算法因帶通輸出信號的幅度太低而失去有效性,也就是通常提到的相位奇點問題,在相位奇點附近,相位信息對位置和頻率的變化極為敏感,因此用這些像素所確定的相位差異來衡量匹配誤差將導致極不可靠的結果。此外,相位匹配演算法的收斂范圍與帶通濾波器的波長有關,通常要考慮相位卷繞,在用相位差進行視差計算時,由於所採用的相位只是原信號某一帶通條件下的相位,故視差估計只能限制在某一限定范圍之內,隨視差范圍的增大,其精確性會有所下降。
基於特徵的圖像匹配方法是目前最常用的方法之一,由於它能夠將對整個圖像進行的各種分析轉化為對圖像特徵(特徵點、特徵曲線等)的分析的優點,從而大大減小了圖像處理過程的計算量,對灰度變化、圖像變形、噪音污染以及景物遮擋等都有較好的適應能力。
基於特徵的匹配方法是為使匹配過程滿足一定的抗噪能力且減少歧義性問題而提出來的。與基於區域的匹配方法不同,基於特徵的匹配方法是有選擇地匹配能表示景物自身特性的特徵,通過更多地強調空間景物的結構信息來解決匹配歧義性問題。這類方法將匹配的搜索范圍限制在一系列稀疏的特徵上。利用特徵間的距離作為度量手段,具有最小距離的特徵對就是最相近的特徵對,也就是匹配對。特徵間的距離度量有最大最小距離、歐氏距離等。
特徵點匹配演算法嚴格意義上可以分成特徵提取、特徵匹配和消除不良匹配點三步。特徵匹配不直接依賴於灰度,具有較強的抗干擾性。該類方法首先從待匹配的圖像中提取特徵,用相似性度量和一些約束條件確定幾何變換,最後將該變換作用於待匹配圖像。匹配中常用的特徵基元有角點、邊緣、輪廓、直線、顏色、紋理等。同時,特徵匹配演算法也同樣地存在著一些不足,主要表現為:
(l)特徵在圖像中的稀疏性決定了特徵匹配只能得到稀疏的視差場,要獲得密集的視差場必須通過使用插值的過程,插值過程通常較為復雜。
(2)特徵的提取和定位的准確與否直接影響特徵匹配結果的精確度。
(3)由於其應用場合的局限性,特徵匹配往往適用於具有特徵信息顯著的環境中,在缺少顯著主導特徵環境中該方法有很大困難。
總之,特徵匹配基元包含了演算法編程上的靈活性以及令人滿意的統計特性。演算法的許多約束條件均能清楚地應用於數據結構,而數據結構的規則性使得特徵匹配非常適用於硬體設計。例如,基於線段的特徵匹配演算法將場景模型描繪成相互聯結的邊緣線段,而不是區域匹配中的平面模型,因此能很好地處理一些幾何畸變問題,對對比度和明顯的光照變化等相對穩定。特徵匹配由於不直接依賴於灰度,計算量小,比基於區域的匹配演算法速度快的多。且由於邊緣特徵往往出現在視差不連續的區域,特徵匹配較易處理立體視覺匹配中的視差不連續問題。
F. 圖像匹配方法有哪些
圖像匹配的方法很多,一般分為兩大類,一類是基於灰度匹配的方法,另一類是基於特徵匹配的方法。
(1)基於灰度匹配的方法。也稱作相關匹配演算法,用空間二維滑動模板進行圖像匹配,不同演算法的區別主要體現在模板及相關准則的選擇方面。
(2)基於特徵匹配的方法。首先在原始圖像中提取特徵,然後再建立兩幅圖像之間特徵的匹配對應關系。常用的特徵匹配基元包括點、線、區域等顯著特徵。圖像特徵相比像素點數量殺過少很多,特徵間的匹配度量隨位置變化尖銳,容易找出准確的匹配位置,特徵提取能大大減少雜訊影響,對灰度變化、形變和遮擋有較強的適應力。
圖像匹配的任務就是尋找同一場景的兩幅或多幅圖像中像素點之間的對應關系。我們研究的圖像匹配方法主要是基於圖像特徵的方法,主要包括特徵提取、特徵描述和特徵匹配三步。SIFT方法是目前效果較好的經典匹配方法,在我們的研究過程中,均是採用SIFT方法作為基準來評價我們提出的演算法的。
G. 圖像匹配的演算法
迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。
H. opencv關於像素點的圖像匹配演算法
首先,建議你將圖像中感興趣區域(比如上圖中的字母)取出來進行歸一化,然後在進行匹配率計算。這是因為周圍環境會對匹配率產生影響。
其次,建議你將匹配率演算法改成Hausdorff距離https://en.wikipedia.org/wiki/Hausdorff,這樣對圖像有些平移什麼的都不怎麼敏感了。