各演算法分析
A. 基於C語言的幾種排序演算法的分析
相關知識介紹(所有定義只為幫助讀者理解相關概念,並非嚴格定義):
1、穩定排序和非穩定排序
簡單地說就是所有相等的數經過某種排序方法後,仍能保持它們在排序之前的相對次序,我們就
說這種排序方法是穩定的。反之,就是非穩定的。
比如:一組數排序前是a1,a2,a3,a4,a5,其中a2=a4,經過某種排序後為a1,a2,a4,a3,a5,
則我們說這種排序是穩定的,因為a2排序前在a4的前面,排序後它還是在a4的前面。假如變成a1,a4,
a2,a3,a5就不是穩定的了。
2、內排序和外排序
在排序過程中,所有需要排序的數都在內存,並在內存中調整它們的存儲順序,稱為內排序;
在排序過程中,只有部分數被調入內存,並藉助內存調整數在外存中的存放順序排序方法稱為外排序。
3、演算法的時間復雜度和空間復雜度
所謂演算法的時間復雜度,是指執行演算法所需要的計算工作量。
一個演算法的空間復雜度,一般是指執行這個演算法所需要的內存空間。
================================================================================
*/
/*
================================================
功能:選擇排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,選出最小的一個數與第一個位置的數交換;
然後在剩下的數當中再找最小的與第二個位置的數交換,如此循環
到倒數第二個數和最後一個數比較為止。
選擇排序是不穩定的。演算法復雜度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t;
for (i=0; i<n-1; i++) /*要選擇的次數:0~n-2共n-1次*/
{
min = i; /*假設當前下標為i的數最小,比較後再調整*/
for (j=i+1; j<n; j++)/*循環找出最小的數的下標是哪個*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果後面的數比前面的小,則記下它的下標*/
}
}
if (min != i) /*如果min在循環中改變了,就需要交換數據*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}
/*
================================================
功能:直接插入排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,假設前面(n-1) [n>=2] 個數已經是排
好順序的,現在要把第n個數插到前面的有序數中,使得這n個數
也是排好順序的。如此反復循環,直到全部排好順序。
直接插入排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t;
for (i=1; i<n; i++) /*要選擇的次數:1~n-1共n-1次*/
{
/*
暫存下標為i的數。注意:下標從1開始,原因就是開始時
第一個數即下標為0的數,前面沒有任何數,單單一個,認為
它是排好順序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,這里就是下標為i的數,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果滿足條件就往後挪。最壞的情況就是t比下標為0的數都小,它要放在最前面,j==-1,退出循環*/
}
*(x+j+1) = t; /*找到下標為i的數的放置位置*/
}
}
/*
================================================
功能:冒泡排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,對當前還未排好序的范圍內的全部數,自上
而下對相鄰的兩個數依次進行比較和調整,讓較大的數往下沉,較
小的往上冒。即:每當兩相鄰的數比較後發現它們的排序與排序要
求相反時,就將它們互換。
下面是一種改進的冒泡演算法,它記錄了每一遍掃描後最後下沉數的
位置k,這樣可以減少外層循環掃描的次數。
冒泡排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
void bubble_sort(int *x, int n)
{
int j, k, h, t;
for (h=n-1; h>0; h=k) /*循環到沒有比較范圍*/
{
for (j=0, k=0; j<h; j++) /*每次預置k=0,循環掃描後更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在後面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交換*/
k = j; /*保存最後下沉的位置。這樣k後面的都是排序排好了的。*/
}
}
}
}
/*
================================================
功能:希爾排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在直接插入排序演算法中,每次插入一個數,使有序序列只增加1個節點,
並且對插入下一個數沒有提供任何幫助。如果比較相隔較遠距離(稱為
增量)的數,使得數移動時能跨過多個元素,則進行一次比較就可能消除
多個元素交換。D.L.shell於1959年在以他名字命名的排序演算法中實現
了這一思想。演算法先將要排序的一組數按某個增量d分成若干組,每組中
記錄的下標相差d.對每組中全部元素進行排序,然後再用一個較小的增量
對它進行,在每組中再進行排序。當增量減到1時,整個要排序的數被分成
一組,排序完成。
下面的函數是一個希爾排序演算法的一個實現,初次取序列的一半為增量,
以後每次減半,直到增量為1。
希爾排序是不穩定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t;
for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*這個實際上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}
/*
================================================
功能:快速排序
輸入:數組名稱(也就是數組首地址)、數組中起止元素的下標
================================================
*/
/*
====================================================
演算法思想簡單描述:
快速排序是對冒泡排序的一種本質改進。它的基本思想是通過一趟
掃描後,使得排序序列的長度能大幅度地減少。在冒泡排序中,一次
掃描只能確保最大數值的數移到正確位置,而待排序序列的長度可能只
減少1。快速排序通過一趟掃描,就能確保某個數(以它為基準點吧)
的左邊各數都比它小,右邊各數都比它大。然後又用同樣的方法處理
它左右兩邊的數,直到基準點的左右只有一個元素為止。它是由
C.A.R.Hoare於1962年提出的。
顯然快速排序可以用遞歸實現,當然也可以用棧化解遞歸實現。下面的
函數是用遞歸實現的,有興趣的朋友可以改成非遞歸的。
快速排序是不穩定的。最理想情況演算法時間復雜度O(nlog2n),最壞O(n2)
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t;
if (low < high) /*要排序的元素起止下標,保證小的放在左邊,大的放在右邊。這里以下標為low的元素為基準點*/
{
i = low;
j = high;
t = *(x+low); /*暫存基準點的數*/
while (i<j) /*循環掃描*/
{
while (i<j && *(x+j)>t) /*在右邊的只要比基準點大仍放在右邊*/
{
j--; /*前移一個位置*/
}
if (i<j)
{
*(x+i) = *(x+j); /*上面的循環退出:即出現比基準點小的數,替換基準點的數*/
i++; /*後移一個位置,並以此為基準點*/
}
while (i<j && *(x+i)<=t) /*在左邊的只要小於等於基準點仍放在左邊*/
{
i++; /*後移一個位置*/
}
if (i<j)
{
*(x+j) = *(x+i); /*上面的循環退出:即出現比基準點大的數,放到右邊*/
j--; /*前移一個位置*/
}
}
*(x+i) = t; /*一遍掃描完後,放到適當位置*/
quick_sort(x,low,i-1); /*對基準點左邊的數再執行快速排序*/
quick_sort(x,i+1,high); /*對基準點右邊的數再執行快速排序*/
}
}
/*
================================================
功能:堆排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
堆的定義如下:具有n個元素的序列(h1,h2,...,hn),當且僅當
滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
時稱之為堆。在這里只討論滿足前者條件的堆。
由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項。完全二叉樹可以
很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。
初始時把要排序的數的序列看作是一棵順序存儲的二叉樹,調整它們的存儲順序,
使之成為一個堆,這時堆的根節點的數最大。然後將根節點與堆的最後一個節點
交換。然後對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點
的堆,並對它們作交換,最後得到有n個節點的有序序列。
從演算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最後一個元素
交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反復調用滲透函數
實現排序的函數。
堆排序是不穩定的。演算法時間復雜度O(nlog2n)。
*/
/*
功能:滲透建堆
輸入:數組名稱(也就是數組首地址)、參與建堆元素的個數、從第幾個元素開始
*/
void sift(int *x, int n, int s)
{
int t, k, j;
t = *(x+s); /*暫存開始元素*/
k = s; /*開始元素下標*/
j = 2*k + 1; /*右子樹元素下標*/
while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判斷是否滿足堆的條件:滿足就繼續下一輪比較,否則調整。*/
{
j++;
}
if (t<*(x+j)) /*調整*/
{
*(x+k) = *(x+j);
k = j; /*調整後,開始元素也隨之調整*/
j = 2*k + 1;
}
else /*沒有需要調整了,已經是個堆了,退出循環。*/
{
break;
}
}
*(x+k) = t; /*開始元素放到它正確位置*/
}
/*
功能:堆排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;
for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆頂放到最後*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的數再建堆*/
}
}
void main()
{
#define MAX 4
int *p, i, a[MAX];
/*錄入測試數據*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n");
/*測試選擇排序*/
p = a;
select_sort(p,MAX);
/**/
/*測試直接插入排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*測試冒泡排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*測試快速排序*/
/*
p = a;
quick_sort(p,0,MAX-1);
*/
/*測試堆排序*/
/*
p = a;
heap_sort(p,MAX);
*/
for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}
printf("\n");
system("pause");
}
B. 幾種常見的排序演算法分析學習
排序演算法一般分為以下幾種: (1)非線性時間比較類排序:交換類排序(快速排序和冒泡排序)、插入類排序(簡單插入排序和希爾排序)、選擇類排序(簡單選擇排序和堆排序)、歸並排序(二路歸並排序和多路歸並排序);(2)線性時間非比較類排序:計數排序、基數排序和桶排序。
C. 幾種進程調度演算法分析
前兩天做操作系統作業的時候學習了一下幾種進程調度演算法,在思考和討論後,有了一些自己的想法,現在就寫出來,跟大家討論下。 ,或者說只有有限的CPU資源,當系統中有多個進程處於就緒狀態,要競爭CPU資源時,操作系統就要負責完成如何分配資源的任務。在操作系統中,由調度程序來完成這一選擇分配的工作,調度程序所使用的演算法即是調度演算法。調度演算法需要考慮的指標主要有盡量保證CPU資源分配的公平性;按照一定策略強制執行演算法調度;平衡整個計算機系統,盡量保持各個部分都處於忙碌狀態。而根據系統各自不同的特點和要求,調度演算法又有一些側重點和目標不同,因此,演算法按照系統差異主要分為三大類: 批處理系統中的調度演算法, 代表調度演算法有:先來先服務、最短作業優先、最短剩餘時間優先。 互動式系統中的調度演算法, 代表調度演算法有:輪轉調度、優先順序調度、多級隊列、最短進程優先、保證調度、彩票調度、公平分享調度。 實時系統中的調度演算法 ,代表調度演算法有:速率單調調度、最早最終時限優先調度。 下面就上述提到的調度演算法中挑出幾個進行重點分析:保證調度保證調度是指利用演算法向用戶做出明確的性能保證,然後盡力按照此保證實現CPU的資源分配。利用這種演算法,就是定一個進程佔用CPU的時間的標准,然後按照這個標准去比較實際佔用CPU的時間,調度進程每次使離此標准最遠的進程得到資源,不斷滿足離所保證的標准最遠的進程,從而平衡資源分配滿足這個標準的要求。 保證調度演算法的優點是:能很好的保證進程公平的CPU份額,當系統的特點是:進程的優先順序沒有太大懸殊,所制定的保證標准差異不大,各個進程對CPU的要求較為接近時,比如說系統要求n個進程中的每個進程都只佔用1/n的CPU資源,利用保證調度可以很容易的實現穩定的CPU分配要求。但缺點是,這種情況太過理想,當系統的各個進程對CPU要求的緊急程度不同,所制定的保證較為復雜的時候,這個演算法實現起來比較困難。 彩票調度彩票調度這種演算法的大意是指向進程提供各種系統資源如CPU資源的彩票,當系統需要做出調度決策時,隨機抽出一張彩票,由此彩票的擁有者獲得資源。在彩票調度系統中,如果有一個新的進程出現並得到一些彩票,那麼在下一次的抽獎中,該進程會有同它持有彩票數量成正比例的機會贏得獎勵。進程持有的彩票數量越多,則被抽中的可能性就越大。調度程序可以通過控制進程的彩票持有數量來進行調度。 彩票調度有很多優點:首先,它很靈活,系統增加分給某個進程的彩票數量,就會大大增加它佔用資源的可能性,可以說,彩票調度的反應是迅速的,而快速響應需求正是互動式系統的一個重要要求。其次,彩票調度演算法中,進程可以交換彩票,這個特點可以更好的保證系統的平衡性,使其各個部分都盡可能的處於忙碌狀態。而且利用彩票調度還可以解決許多別的演算法很難解決的問題,例如可以根據特定的需要大致成比例的劃分CPU的使用。 速率單調調度 速率單調調度演算法是一種可適用於可搶占的周期性進程的經典靜態實時調度演算法。當實時系統中的進程滿足:每個周期性進程必須在其周期內完成,且進程之間沒有相互依賴的關系,每個進程在一次突發中需要相同的CPU時間量,非周期的進程都沒有最終時限四個條件時,並且為了建模方便,我們假設進程搶占即刻發生沒有系統開銷,可以考慮利用速率單調演算法。 速率單調調度演算法是將進程的速率(按照進程周期所算出的每秒響應的次數)賦為優先順序,則保證了優先順序與進程速率成線性關系,這即是我們所說的速率單調。調度程序每次運行優先順序最高的,只要優先順序較高的程序需要運行,則立即搶占優先順序低的進程,而優先順序較低的進程必須等所有優先順序高於它的進程結束後才能運行。 速率單調調度演算法可以保證系統中最關鍵的任務總是得到調度,但是缺點是其作為一種靜態演算法,靈活性不夠好,當進程數變多,系統調度變得復雜時,可能不能較好的保證進程在周期內運行。 最早最終時限優先調度 最早最終時限優先調度演算法是一個動態演算法,不要求進程是周期性的,只要一個進程需要CPU時間,它就宣布它的到來時間和最終時限。調度程序維持一個可運行的進程列表,按最終時限排序,每次調度一個最終時限最早的進程得到CPU 。當新進程就緒時,系統檢查其最終時限是否在當前運行的進程結束之前,如果是,則搶占當前進程。 由於是動態演算法,最早最終優先調度的優點就是靈活,當進程數不超過負載時,資源分配更優,但也同樣由於它的動態屬性,進程的優先順序都是在不斷變化中的,所以也沒有哪個進程是一定可以保證滿足調度的,當進程數超過負載時,資源分配合理度會急速下降,所以不太穩定。