圖像對比演算法
Ⅰ 圖像比對的原理或者演算法
有雜訊情況下。1、配准;2、兩張圖的圖像塊分別計算特徵(lbp,sift等);3、計算特徵的距離(歐式距離等)。在matlab或opencv下都可以。
Ⅱ C#灰度圖像通過相似度演算法找出相似度最高的圖片
這種以圖搜圖可以用感知哈希演算法,
第一步 縮小圖片尺寸
將圖片縮小到8x8的尺寸, 總共64個像素. 這一步的作用是去除各種圖片尺寸和圖片比例的差異, 只保留結構、明暗等基本信息.
第二步 轉為灰度圖片
將縮小後的圖片, 轉為64級灰度圖片.
第三步 計算灰度平均值
計算圖片中所有像素的灰度平均值
第四步 比較像素的灰度
將每個像素的灰度與平均值進行比較, 如果大於或等於平均值記為1, 小於平均值記為0.
第五步 計算哈希值
將上一步的比較結果, 組合在一起, 就構成了一個64位的二進制整數, 這就是這張圖片的指紋.
第六步 對比圖片指紋
得到圖片的指紋後, 就可以對比不同的圖片的指紋, 計算出64位中有多少位是不一樣的. 如果不相同的數據位數不超過5, 就說明兩張圖片很相似, 如果大於10, 說明它們是兩張不同的圖片.
具體的c#代碼可以看
usingSystem;
usingSystem.IO;
usingSystem.Drawing;
namespaceSimilarPhoto
{
classSimilarPhoto
{
ImageSourceImg;
publicSimilarPhoto(stringfilePath)
{
SourceImg=Image.FromFile(filePath);
}
publicSimilarPhoto(Streamstream)
{
SourceImg=Image.FromStream(stream);
}
publicStringGetHash()
{
Imageimage=ReceSize();
Byte[]grayValues=ReceColor(image);
Byteaverage=CalcAverage(grayValues);
Stringreslut=ComputeBits(grayValues,average);
returnreslut;
}
//Step1:Recesizeto8*8
privateImageReceSize(intwidth=8,intheight=8)
{
Imageimage=SourceImg.GetThumbnailImage(width,height,()=>{returnfalse;},IntPtr.Zero);
returnimage;
}
//Step2:ReceColor
privateByte[]ReceColor(Imageimage)
{
BitmapbitMap=newBitmap(image);
Byte[]grayValues=newByte[image.Width*image.Height];
for(intx=0;x<image.Width;x++)
for(inty=0;y<image.Height;y++)
{
Colorcolor=bitMap.GetPixel(x,y);
bytegrayValue=(byte)((color.R*30+color.G*59+color.B*11)/100);
grayValues[x*image.Width+y]=grayValue;
}
returngrayValues;
}
//Step3:Averagethecolors
privateByteCalcAverage(byte[]values)
{
intsum=0;
for(inti=0;i<values.Length;i++)
sum+=(int)values[i];
returnConvert.ToByte(sum/values.Length);
}
//Step4:Computethebits
privateStringComputeBits(byte[]values,byteaverageValue)
{
char[]result=newchar[values.Length];
for(inti=0;i<values.Length;i++)
{
if(values[i]<averageValue)
result[i]='0';
else
result[i]='1';
}
returnnewString(result);
}
//Comparehash
(stringa,stringb)
{
if(a.Length!=b.Length)
thrownewArgumentException();
intcount=0;
for(inti=0;i<a.Length;i++)
{
if(a[i]!=b[i])
count++;
}
returncount;
}
}
}
Ⅲ 圖像處理的演算法有哪些
圖像處理基本演算法操作從處理對象的多少可以有如下劃分:
一)點運算:處理點單元信息的運算
二)群運算:處理群單元 (若干個相鄰點的集合)的運算
1.二值化操作
圖像二值化是圖像處理中十分常見且重要的操作,它是將灰度圖像轉換為二值圖像或灰度圖像的過程。二值化操作有很多種,例如一般二值化、翻轉二值化、截斷二值化、置零二值化、置零翻轉二值化。
2.直方圖處理
直方圖是圖像處理中另一重要處理過程,它反映圖像中不同像素值的統計信息。從這句話我們可以了解到直方圖信息僅反映灰度統計信息,與像素具體位置沒有關系。這一重要特性在許多識別類演算法中直方圖處理起到關鍵作用。
3.模板卷積運算
模板運算是圖像處理中使用頻率相當高的一種運算,很多操作可以歸結為模板運算,例如平滑處理,濾波處理以及邊緣特徵提取處理等。這里需要說明的是模板運算所使用的模板通常說來就是NXN的矩陣(N一般為奇數如3,5,7,...),如果這個矩陣是對稱矩陣那麼這個模板也稱為卷積模板,如果不對稱則是一般的運算模板。我們通常使用的模板一般都是卷積模板。如邊緣提取中的Sobel運算元模板。
Ⅳ 求圖像處理演算法中,調整亮度、對比度、飽和度的演算法!
我覺得你了解這幾個調整工具的演算法,還沒有了解一下圖層混合模式的計算方法有意義。亮度就是一幅照片中的黑白灰分布情況,對比度是亮部和暗部的差距,飽和度就是顏色純度,前兩者是灰度概念,飽和度才和顏色有關系。
而且亮度、對比度作為概念來理解,當然很有意義,但是這個調整工具PS已經把它弱化了,因為它調整太過粗放,用色階和曲線都能更精確的實現。
Ⅳ 圖像視頻相似度演算法
前段時間公司項目用到了語音識別,圖像識別,視頻識別等,其實不能說是識別,應該說是相似度對比吧,畢竟相似度對比還上升不了到識別哈,等以後有了更深的理解再來討論修改下!這次就當做一個總結吧!
其實它的原理就是一個把需要的特徵總結在一個指紋碼裡面,進行降維成指紋碼,假如個指紋碼一模一樣,那兩張圖片就想似了.下面有寫怎麼編譯成唯一標識,再用漢明距離計算兩個指紋碼的相似度.
圖片是採用phash演算法,一共分為四步吧.
1.將圖片縮放到16*16大小,這是我們選擇的合適的大小,假如寬高不一樣,直接將其壓到16*16,去掉細節,只保留宏觀;
2.圖片一共是16*16的,共256個像素,我們將圖片進行灰度化,灰度化就是只有黑白灰三種,從白到黑,一共分了255層;
3.灰度化之後將圖片進行DCT轉換(離散餘弦變化),因為為了識別有的圖片旋轉,這個DCT轉換是將圖片進行了一種壓縮演算法;
4.我們對這個演算法進行了優化,因為之前是計算像素的均值,我們為了更准確,我們取RGB,rgb一共分為255個像素,我們將255個像素分為16段,如果像素大於0-16記為0,17到32記為1,直到255,這樣就得到255位的二進制,這就是這張圖片的指紋碼.
得到唯一標識的指紋碼之後怎麼去計算像素度呢?
通過漢明距離比較兩個二進制距離,如果距離小於<10的話,我們就判定兩張圖片相似.如果兩個指紋碼(二進制)一模一樣,我們就判定兩個是一張圖片,或者類似;
視頻的話我們是通過ffmpeg(ff am pig),它是一個專門處理視頻的框架,可以從視頻中按針提取圖片.然後就按照圖片的相似度取對比了...
Ⅵ 圖像匹配的演算法
迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。
Ⅶ 計算圖像相似度的演算法有哪些
SIM = Structural SIMilarity(結構相似性),這是一種用來評測圖像質量的一種方法。由於人類視覺很容易從圖像中抽取出結構信息,因此計算兩幅圖像結構信息的相似性就可以用來作為一種檢測圖像質量的好壞.
首先結構信息不應該受到照明的影響,因此在計算結構信息時需要去掉亮度信息,即需要減掉圖像的均值;其次結構信息不應該受到圖像對比度的影響,因此計算結構信息時需要歸一化圖像的方差;最後我們就可以對圖像求取結構信息了,通常我們可以簡單地計算一下這兩幅處理後的圖像的相關系數.
然而圖像質量的好壞也受到亮度信息和對比度信息的制約,因此在計算圖像質量好壞時,在考慮結構信息的同時也需要考慮這兩者的影響.通常使用的計算方法如下,其中C1,C2,C3用來增加計算結果的穩定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)為圖像的均值
u(x)^2 + u(y)^2 + C1
2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)為圖像的方差
d(x)^2 + d(y)^2 + C2
d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)為圖像x,y的協方差
d(x)d(y) + C3
而圖像質量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分別用來控制三個要素的重要性,為了計算方便可以均選擇為1,C1,C2,C3為比較小的數值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1 << 1, K2 << 1, L為像素的最大值(通常為255).
希望對你能有所幫助。