當前位置:首頁 » 操作系統 » 最近最短演算法

最近最短演算法

發布時間: 2023-03-17 15:08:37

① 直觀理解:單源點最短路徑——Dijkstra演算法

  Dijkstra演算法是由荷蘭計算機科學家 Edsger Wybe Dijkstra於1959年提出的單源點最短路徑演算法(SSSP:Single Souce Shortest Path)。是一個解決加權圖(不含負權重的邊)中從一個頂點到其餘各個頂點最短路徑問題的演算法。Dijkstra演算法是一個集 貪心演算法 , 廣度優先搜索(BFS) 和 動態規劃 於一身的最短路徑演算法。Dijkstra演算法的主要特點是從起源點開始,採用貪心演算法的策略,每次遍歷到始點距離最近且未訪問過的頂點的鄰接頂點,直到擴展到終點為止。
  Dijkstra演算法通過維護兩個集合: (已求出最短路徑的頂點)和 (未求出最短路徑的頂點),每次迭代地從 中移除路徑距離最小的點到集合 中,並通過這個新移入的點來更新 中各個頂點到源點的最短路徑,直到集合 為空。下面我們通過一個例子來簡單描述Dijkstra演算法的過程。
  假設我們有如下的圖,其中頂點A未此次演算法的起點:

  首先我們需要初始化兩個集合 和 ,以及 中每個頂點到源點的距離,若不直接於A相鄰,結果置為正無窮∞。

   Step 1: 從集合 中挑選出距離最小的點,這里會挑選出頂點F,集合 和 變更為: , ,根據最新的 ,重新計算 中頂點到源點A的最短距離。

   Step 2:: 從集合 中挑選出距離最小的點,這里會挑選出頂點E,集合 和 變更為: , ,根據最新的 ,重新計算 中頂點到源點A的最短距離。

   Step 3: 從集合 中挑選出距離最小的點,這里會挑選出頂點C,集合 和 變更為: , ,根據最新的 ,重新計算 中頂點到源點A的最短距離。

   Step 4: 從集合 中挑選出距離最小的點,這里會挑選出頂點D,集合 和 變更為: , ,根據最新的 ,重新計算 中頂點到源點A的最短距離。

   Step 5: 從集合 中挑選出距離最小的點,這里會挑選出頂點B,集合 和 變更為: , ,根據最新的 ,重新計算 中頂點到源點A的最短距離。

   Step 6: 從集合 中挑選出距離最小的點,這里會挑選出頂點G,集合 和 變更為: , ,由於集合 為空,演算法停止迭代,輸出結果。

  以上就是對Dijkstra演算法的計算過程的簡單描述。

② 弗洛伊德演算法求出最短距離

(1)利用二維數組dist[i][j]記錄當前vi到vj的最短路徑長度,數組dist的初值等於圖的帶權鄰接矩陣;


(3)依次向S中加入v0,v1…vn-1,每加入一個頂點,蠢脊對dist[i][j]進行一次修正:設S={v0,v1…vk-1},加入vk,則dist(k)[i][j]=min{dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。

dist(k)[i][j]的含義:允許中間頂點的笑跡序號最大為k時從vi到vj的最短路徑長度。
dist(n-1)[i][j]就是vi到vj的最短路徑長度。

弗洛伊德最短距離演算法(FloydShortestPathAlgorithm)又稱為插點法,是一種利用動態規劃的思想尋找給定的加權圖中多源點之間最短路徑的演算法。該演算法名稱以創始人之一、1978年圖靈獎獲得者、斯坦福大學計算機科學系教授羅伯特·弗洛伊德命名。
中文名弗洛伊德最短距離演算法
外文名FloydShortestPathAlgorithm
所屬學科IT
所屬領域程序設計
簡介
最短路問題是網路最優化中一個基本而又非常重要的問題,這一問題相對比較簡單,在實際生產和生活中經常遇到,許多的網路最優化問題可以化為最短路問題,或者用最短路演算法作為其子程序.因此,最短路的用途已遠遠超出其表面意義迄今為止,所有最短路演算法都只對不含負迴路的網路有效,實際上對含有負迴路的網路,其最短路問題是NP困難的,因此本研究所討論的網路也不含負迴路.此外,如果將無向圖每條邊用兩條端點相同、方向相反的弧來代替,可以將其化為有向圖,因而不討論無向圖.本研究中未述及的術語、記號。
Floyd演算法是一種用於尋找給定加權圖中頂點間最短路徑的演算法,以1978年圖靈獎獲得者斯坦福大學計算機科學系教授RobertW.Floyd命名。Floyd演算法採用帶升滲動態規劃的原理計算兩兩頂點間最短路徑,主要解決網路路由尋找最優路徑的問題。

③ 最短路徑演算法(Dijkstra)

Dijkstra( 迪科斯特拉 )演算法是用來解決單源最短路徑的演算法,要求路徑權值非負數。該演算法利用了深度優先搜索和貪心的演算法。

下面是一個有權圖,求從A到各個節點的最短路徑。

第1步:從A點出發,判斷每個點到A點的路徑(如果該點不能直連A點則距離值為無窮大,如果該點能和A直連則是當前的權值),計算完之後把A點上色,結果如下圖:

第2步:從除A點之外的點查找到距離A點最近的點C,從C點出發查找其鄰近的節點(除去已上色的點),並重新計算C點的鄰近點距離A點的值,如圖中B點,若新值(C點到A點的值+C點到該點的路徑)小於原值,則將值更新為5,同理更新D、E點。同時將C標記為已經處理過,如圖所示塗色。

第3步:從上色的節點中查找距離A最近的B點,重復第3步操作。

第4步: 重復第3步,2步,直到所有的節點都上色。

最後就算出了從A點到所有點的最短距離。

leetcode 743題

④ 最短路徑演算法

最短路徑的演算法主要有三種:floyd演算法、Dijkstra演算法、Bellman-Ford(貝爾曼-福特)

一、floyd演算法

基本思想如下:從任意節點A到任意節點B的最短路徑不外乎2種可能,1是直接從A到B,2是從A經過若干個節點X到B。所以,我們假設Dis(AB)為節點A到節點B的最短路徑的距離,對於每一個節點X,我們檢查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,證明從A到X再到B的路徑比A直接到B的路徑短,我們便設置Dis(AB) = Dis(AX) + Dis(XB),這樣一來,當我們遍歷完所有節點X,Dis(AB)中記錄的便是A到B的最短路徑的距離。

三、Bellman-Ford(貝爾曼-福特)

演算法的流程如下:

給定圖G(V, E)(其中V、E分別為圖G的頂點集與邊集),源點s,

1.數組Distant[i]記錄從源點s到頂點i的路徑長度,初始化數組Distant[n]為, Distant[s]為0;

2.以下操作循環執行至多n-1次,n為頂點數:
對於每一條邊e(u, v),如果Distant[u] + w(u, v) < Distant[v],則另Distant[v] = Distant[u]+w(u, v)。w(u, v)為邊e(u,v)的權值;
若上述操作沒有對Distant進行更新,說明最短路徑已經查找完畢,或者部分點不可達,跳出循環。否則執行下次循環;

3.為了檢測圖中是否存在負環路,即權值之和小於0的環路。對於每一條邊e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的邊,則圖中存在負環路,即是說該圖無法求出單源最短路徑。否則數組Distant[n]中記錄的就是源點s到各頂點的最短路徑長度。

可知,Bellman-Ford演算法尋找單源最短路徑的時間復雜度為O(V*E).

⑤ 一靜兩動是如何求最短路徑

一靜兩動是如何求最短路徑的

1、採用Dijkstra演算法:

Dijkstra演算法是一種用於求解有向圖中螞握顫的最短路徑的演算法,它的主要思想是從一個頂點出發,每次尋找和當前頂點最近的鄰接點,並將其加入到已經求出最短路徑的頂點集合中,直到找到終點。

2、採用A*演算法:

A*演算法是一種啟發式搜索演算法,它是Dijkstra演算法悶敗的皮猜改進,它通過引入一個啟發函數來提高搜索效率,啟發函數通過估算每個頂點到終點的距離,來指導搜索的方向,從而使搜索更加有效。

⑥ 最短路徑演算法介紹 最短路徑簡介

1、從某頂點出發,沿圖的邊到達另一頂點所經過的路徑中,各邊上權值之和最小的一條路徑叫做最短路徑。解決最短路的問題有以下演算法,Dijkstra演算法,Bellman-Ford演算法,Floyd演算法和SPFA演算法等。

2、定義:最短路爛滲徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點數陸之間的最短路徑。演算法具體的形式包括:確定起點的最短路徑問題- 即已知起始結點,求最短路徑的問題。適合使用Dijkstra演算法。

3、確定飢畢脊終點的最短路徑問題- 與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。

4、確定起點終點的最短路徑問題- 即已知起點和終點,求兩結點之間的最短路徑。全局最短路徑問題- 求圖中所有的最短路徑。適合使用Floyd-Warshall演算法。

熱點內容
左端演算法 發布:2025-08-24 21:53:26 瀏覽:526
安卓系統怎麼編譯環境 發布:2025-08-24 21:53:24 瀏覽:780
java轉義符 發布:2025-08-24 21:48:26 瀏覽:65
powershell腳本識別 發布:2025-08-24 21:42:30 瀏覽:967
壓縮機企業 發布:2025-08-24 21:35:14 瀏覽:924
三星證書存儲 發布:2025-08-24 21:29:27 瀏覽:910
古詩文源碼 發布:2025-08-24 21:20:15 瀏覽:400
androidxml字元 發布:2025-08-24 20:47:31 瀏覽:53
php頁面跳轉參數 發布:2025-08-24 20:46:25 瀏覽:829
java的常用設計模式 發布:2025-08-24 20:36:52 瀏覽:311