小波分析演算法
① 小波演算法是什麼
王衛國 郭寶龍
(西安電子科技大學機電工程學院,西安 710071)
摘 要 隨著互聯網的普及和圖象應用范圍的不斷擴大,對圖象的編碼提出了新的要求,即不僅要求具有高的壓縮比,還要求有許多新的功能,如漸進編解碼、從有損壓縮到無損壓縮等。嵌入式零樹小波編碼較好地實現了這一思想,因此奠定了它在圖象編碼中的地位。近年來,在嵌入式零樹小波編碼(EZW)演算法的基礎上出現了許多新的改進演算法,如多級樹集合分裂演算法(SPIHT),集合分裂嵌入塊編碼(SPECK),可逆的嵌入小波壓縮法(CREW)等.本文對這些演算法從原理到性能進行了比較和討論,說明了嵌入式圖象編碼的研究方向。
關 鍵 詞 圖象編碼 嵌入式 零樹 小波變換
On Embedded Zerotree Wavelets Coding and other Improved Algorithms
WANG Wei-guo, GUO Bao-long
(School of Mechano-Electronic Engineering,Xidian Univ.,Xi』an 710071)
Abstract With the extensive application of internet and image,some new requirements on image coding,such as high compression rate ,pregressive codec,and compression from lossy to lossless ,are to be satisfied.These functions can be performed well by EZW(Embedded Zerotree Wavelets) coding.On the bases of EZW,many newly improved algorithms have been developed in recent years.They can illustrated by algorithms like SPIHT(Set Partitioning in Hierarchical Trees),SPECK(Set Partitioned Embedded block coder),In this paper,the writer discusses the principles and performances of these algorithms,thus explains the research tendency in the area of embedded image coding.
Keywords Image coding,Embedded,Zerotree,Wavelet transform
0. 引言
在基於小波變換的圖象壓縮方案中,嵌入式零樹小波 EZW(Embedded Zerotree Wavelets)[1]編碼很好地利用小波系數的特性使得輸出的碼流具有嵌入特性。它的重要性排序和分級量化的思想被許多編碼演算法所採用。近年來,在對EZW改進的基礎上,提出了許多新的性能更好的演算法,如多級樹集合分裂演算法(SPIHT :Set Partitioning In Hierarchical Trees)[2],集合分裂嵌入塊編碼(SPECK:Set Partitioned Embedded bloCK coder),可逆嵌入小波壓縮演算法(CREW:Compression with Reversible Embedded Wavelets)[3] 。本文對這些演算法進行了原理分析、性能比較,說明了嵌入式小波圖象編碼的研究方向。
② 小波演算法
Function wavelet(s,wname,n,options);
Begin
{
功能:
一維序列小波消噪。
參數:
s:一維序列
wname:小波函數名
現有小波函數名(小波函數的選取依靠經驗)
Daubechies:
'db1' , 'db2', ... ,'db45' 'db1' 就是haar 小波函數
Coiflets :
'coif1', ... , 'coif5'
Symlets :
'sym2' , ... , 'sym8'
Biorthogonal:
'bior1.1', 'bior1.3' , 'bior1.5'
'bior2.2', 'bior2.4' , 'bior2.6', 'bior2.8'
'bior3.1', 'bior3.3' , 'bior3.5', 'bior3.7'
'bior3.9', 'bior4.4' , 'bior5.5', 'bior6.8'.
Reverse Biorthogonal:
'rbio1.1', 'rbio1.3' , 'rbio1.5'
'rbio2.2', 'rbio2.4' , 'rbio2.6', 'rbio2.8'
'rbio3.1', 'rbio3.3' , 'rbio3.5', 'rbio3.7'
'rbio3.9', 'rbio4.4' , 'rbio5.5', 'rbio6.8'.
n :分解層數
options : 選項
選擇欄位說明
array('brief':1, // 默認為1 採用簡單剔除高頻諧波 達到消噪的目的
// 如果為 0 採用估計序列噪音標准差剔除噪音,
'sigma':0, // 為0 默認採用 序列的高階諧波估計標准差;也可自己輸入值
'which':1, // 以 某一層諧波作為噪音估計的數據,默認第一層
'alpha':2, // 閾值懲罰系數,默認為2
"thr":0, // 閾值大小,默認0 採用諧波估計,也可以直接給出
'sorh':'s', // 閾值方式設置,'s' 軟閾值,'h'硬閾值 默認為's'
);
返回結果:
一維數字數組,消噪後的序列。
範例:
s := array(2484.82690429688,2479.05493164063,2482.34301757813,2437.794921875,
2447.7548828125,2512.962890625,2443.05688476563,2433.15893554688,
2393.18310546875,2415.05395507813,2392.06201171875,2365.34301757813,
2359.21997070313,2344.787109375,2348.51611328125,2420.00,2438.7900390625,
2431.375,2440.40209960938,2383.48510742188,2377.51196289063,2331.36596679688,
2317.27490234375,2370.3330078125,2409.67211914063,2427.47998046875,
2435.61401367188,2473.40991210938,2468.25,2470.01904296875,2504.10791015625,
2508.09008789063,2528.2939453125,2509.79907226563,2503.8359375,2524.9189453125,
2479.53588867188,2481.083984375,2528.71411132813,2529.76098632813,2466.958984375,
2463.0458984375,2416.56201171875,2415.1298828125,2412.625,2395.06494140625,
2397.55395507813,2380.22412109375,2383.03393554688,2412.39306640625,
2333.4140625,2386.86010742188,2360.6640625,2333.22900390625,2325.90502929688,
2332.72998046875,2329.82006835938,2315.27001953125,2291.544921875,2248.59008789063,
2228.52490234375,2180.89501953125,2224.84008789063,2218.23510742188,2215.92993164063,
2191.14794921875,2186.29711914063,2204.78393554688,2190.11010742188,2166.205078125,
2170.01293945313,2173.56103515625,2199.4169921875,2169.38989257813,2148.45190429688,
2163.39501953125,2225.88989257813,2285.74389648438,2276.0458984375,2275.01000976563,
2244.580078125,2206.19311523438,2298.3759765625,2266.38403320313,2296.07495117188,
2319.11791992188,2285.0380859375,2292.61010742188,2268.080078125,2312.55590820313,
2330.40502929688,2331.13598632813,2291.90209960938,2347.53002929688,2349.58911132813,
2351.98095703125,2351.85498046875,2344.77099609375,2366.70190429688,2356.86010742188,
2357.18090820313,2363.59692382813,2381.42993164063,2403.5869140625,2409.55395507813,
2439.6279296875,2447.05688476563,2451.85693359375,2428.48706054688,2426.11499023438,
2460.69311523438);
n := 2;
options := array('brief':1,'sigma':0,'which':1,'alpha':2,"thr":0,'sorh':'s');
return wavelet(s,wname,n,options) ;
天軟數學組
20120627
}
if not ifarray(options) then options := array();
defaut := wavedefaut() union options;
cout := 4;
cl:=wavedec(s,n,wname); //小波分解
if defaut['brief']=1 then
ret :=wrcoef('a',cl[0],cl[1],wname,n);
else
begin
//***************小波消噪*************************************************
k := defaut['which']; //標准差估計選項 ,k 為 1 到 n的整數 默認為1;
if defaut['sigma']=0 then sigma := wnoisest(cl[0],cl[1],k);
else //通過小波第k層細節系數(諧波)估計 ,噪音標准差
sigma := defaut['segma'];
if defaut['alpha']=0 then alpha :=2; // alpha 懲罰因子 大於1 的數 一般為默認2;
else alpha := defaut['alpha'];
if defaut['thr']=0 then
thr := wbmpen(cl[0],cl[1],sigma,alpha); //噪音信號全局閾值
else thr := defaut['thr'];
sorh := defaut['sorh'];
ret:=wdencmp('gbl',cl[0],cl[1],wname,n,thr,sorh)[0]; //採用軟閾值和近似信號進行消噪;
end //第一個參數為'gbl'為擴展介面備用,可以隨意輸入
return ret;
end;
function wavedefaut();
begin
return array('brief':1,'sigma':0,'which':1,'alpha':2,
"thr":0,'sorh':'s'
);
end
③ 小波分析法和遺傳演算法之間是什麼樣的關系
1、小波變換是通過縮放母小波(Mother wavelet)的寬度來獲得信號的頻率特徵, 通過平移母小波來獲得信號的時間信息。對母小波的縮放和平移操作是為了計算小波系數,這些小波系數反映了小波和局部信號之間的相關程度。小波變換基,既具有頻率局域性質,又具有時間局域性質。小波變換的多分辨度的變換,能在多個尺度上分解,便於觀察信號在不同尺度(解析度)上不同時間的特性。小波變換存在快速演算法,對於M點序列而言,計算復雜性為:O(M),處理快速。小波變換基函數有多種類型,可以是正交的,也可以是非正交(雙正交),比傅里葉變換更加靈活。小波分析的應用領域十分廣泛,它包括:數學領域的許多學科;信號分析、圖像處理;量子力學、理論物理;軍事電子對抗與武器的智能化;計算機分類與識別;音樂與語言的人工合成;醫學成像與診斷;地震勘探數據處理;大型機械的故障診斷等方面;例如,在數學方面,它已用於數值分析、構造快速數值方法、曲線曲面構造、微分方程求解、控制論等。在信號分析方面的濾波、去雜訊、壓縮、傳遞等。在圖像處理方面的圖像壓縮、分類、識別與診斷,去污等。在醫學成像方面的減少B超、CT、核磁共振成像的時間,提高解析度等。
(1)小波分析用於信號與圖像壓縮是小波分析應用的一個重要方面。它的特點是壓縮比高,壓縮速度快,壓縮後能保持信號與圖像的特徵不變,且在傳遞中可以抗干擾。基於小波分析的壓縮方法很多,比較成功的有小波包最好基方法,小波域紋理模型方法,小波變換零樹壓縮,小波變換向量壓縮等。
(2)小波在信號分析中的應用也十分廣泛。它可以用於邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數、信號的識別與診斷以及多尺度邊緣檢測等。
(3)在工程技術等方面的應用。包括計算機視覺、計算機圖形學、曲線設計、湍流、遠程宇宙的研究與生物醫學方面。
2、遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。遺傳演算法的一些主要應用領域:
(1)函數優化
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。對於一些非線性、多模型、多目標的函數優化問題,用其它優化方法較難求解,而遺傳演算法可以方便的得到較好的結果。
(2)組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。實踐證明,遺傳演算法對於組合優化中的NP問題非常有效。例如遺傳演算法已經在求解旅行商問題、 背包問題、裝箱問題、圖形劃分問題等方面得到成功的應用。 此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
綜上所述,小波分析法和遺傳演算法主要有一下幾方面的不同:(1)演算法原理不同;(2)演算法的應用側重領域不同。遺傳演算法不是求解小波分析函數的一種演算法。
④ 用小波分析法除去音頻信號的雜訊
小波變換及其應用是八十年代後期發展起來的應用數學分支,被稱為「Fourier分析方法的突破性進展[1]」。 1986年Meyer Y構造了一個真正的小波基,十多年間小波分析及其應用得到了迅速發展,原則上傳統的傅里葉分析可用小波分析方法取代[2],它能對幾乎所有的常見函數空間給出通過小波展開系數的簡單刻劃,也能用小波展開系數描述函數的局部光滑性質,特別是在信號分析中,由於它的局部分析性能優越,因而在數據壓縮與邊緣檢測等方面它比現有的手段更為有效[3-8]。 小波變換在圖像壓縮中的應用因它的高壓縮比和好的恢復圖像質量而引起了廣泛的注意,且出現了各種基於小波變換的圖像壓縮方案。
小波變換自1992年Bos M等[9]首先應用於流動注射信號的處理,至今雖才8年時間,但由於小波變換其優良的分析特性而迅速滲透至分析化學信號處理的各個領域。本文介紹了小波變換的基本原理及其在分析化學中的應用情況。
1 基本原理
設f(t)為色譜信號,其小波變換在L2(R)中可表示為:
其中a, b∈R,a≠0,參數a稱為尺度因子b為時移因子,而(Wf)(b, a)稱為小波變換系數,y(t)為基本小波。在實際分析化學信號檢測中其時間是有限長度,f(t)通常以離散數據來表達,所以要採用Mallat離散演算法進行數值計算,可用下式表示:
fj+1=θj + f j
其中:N為分解起始尺度;M為分解次數;fj和qj可由下式求得:
此處:Φj, m為尺度函數;Ψj, m 為小波函數;系數Cmj ,dmj可由下式表達:
hk-2m , gk-2m取決於小波母函數的選取。
用圖表示小波分解過程如下:
圖中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分別稱為在尺度N上的低頻分量和高頻分量。上述分解過程的逆過程即是信號的重構過程。
2 分析化學中的應用
根據小波變換基本原理及其優良的多分辯分析特性,本文將小波變換在分析化學信號處理中的應用劃歸為以下三個方面:
2.1 信號的濾波
小波濾波方法目前在分析化學中應用主要是小波平滑和小波去噪兩種方法。小波平滑是將某一信號先經小波分解,將在時間域上的單一信號分解為一系列不同尺度上的小波系數(也稱不同頻率上的信號), 然後選定某一截斷尺度,使高於此尺度的小波系數全部為零,再重構信號,這樣就完成了一個低通小波濾波器的設計;而小波去噪,則是在小波分解基礎上選定一閾值,對所有尺度空間的小波系數進行比較,使小於此閾值的小波系數為零,然後重構信號[10]。
邵利民[11]等首次將小波變換應用於高效液相色譜信號的濾波,他們應用了Haar小波母函數,由三次小波分解後所得的低頻部分重構色譜信號,結果成功地去除了雜訊,明顯地提高了色譜信號的信噪比,而色譜峰位保持一致,此法提高了色譜的最低檢測量和色譜峰的計算精度。董雁適[12]等提出了基於色譜信號的小波自適應濾波演算法,使濾波與雜訊的頻帶分布,強度及信噪在頻帶上的交迭程度基本無關,具有較強的魯棒性。
在光譜信號濾噪中的應用,主要為紅外光譜和紫外光譜信號濾噪方面的應用,如Bjorn K A[13]等將小波變換用於紅外光譜信號的去噪,運用6種不同的小波濾噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)對加噪後紅外光譜圖進行了去噪,針對加噪與不加噪的譜圖,對Fourier變換、移動平均濾波與小波濾波方法作了性能比較研究,結果認為Fourier變換、移動平均濾波等標准濾波方法在信噪比很低時濾噪性能與小波濾波方法差不多,但對於高信噪比的信號用小波濾噪方法(特別是HYBRID和VISU)則更有效 。閔順耕[14]等對近紅外漫反射光譜進行了小波變換濾波。顧文良[15]等對示波計時電信號進行了濾噪處理。王立世[16]等對電泳信號也做了小波平滑和去噪,都取得了滿意的效果。鄒小勇[17]等利用小波的時頻特性去除了階躍伏安信號中的噪音,並提出了樣條小波多重濾波分析方法,即將過濾後的高頻噪音信號當成原始信號進行濾波處理,使之對有用信號進行補償。鮑倫軍等[18]將樣條小波和傅里葉變換聯用技術應用於高噪音信號的處理。另外,程翼宇[19]等將紫外光譜信號的濾噪和主成分回歸法進行了有機的結合,提出了小波基主成分回歸(PCRW)方法,改善了主成分回歸演算法。
2.1 信號小波壓縮
信號經小波分解之後,噪音信號會在高頻部分出現,而對於有用的信號分量大部分在低頻部分出現,據此可以將高頻部分小波系數中低於某一閾值的系數去除,而對其餘系數重新編碼,只保留編碼後的小波系數,這樣可大大減少數據貯存量,達到信號壓縮的目的。
在近代分析化學中分析儀器的自動化水平在不斷提高,分析儀器所提供的數據量越來越大。尋找一種不丟失有效信息的數據壓縮方法,節省數據的貯存量,或降低與分析化學信息處理有關的一些演算法的處理量,已成為人們關心的問題。Chau F T等[20]用快速小波變換對模擬和實驗所得的紫外可見光譜數據進行了壓縮,討論了不同階數的Daubechies小波基、不同的分解次數及不同的閾值對壓縮結果的影響。Barclay V J和Bonner R F[10]對實驗光譜數據作了壓縮,壓縮率可達1/2~1/10,並指出在數據平滑和濾噪的同時,也能進行數據的壓縮是小波有別與其他濾波方法的一大特點。王洪等[21]用Daubechies二階正交小波基對聚乙烯紅外光譜進行了成功的壓縮,數據可壓縮至原來的1/5以下。邵學廣等[22]對一維核磁共振譜數據作了小波變換壓縮,分別對常用的Haar、Daubechies以及Symmlet小波基作了比較,其結果表明准對稱的Symmlet小波基對數據的復原效果最佳,而且在壓縮到64倍時,均方差仍然較小。章文軍等[23]提出了常用小波變換數據壓縮的三種方法,將緊支集小波和正交三次B-樣條小波壓縮4-苯乙基鄰苯二甲酸酐的紅外光譜數據進行了對比,計算表明正交三次B-樣條小波變換方法效果較好,而在全部保留模糊信號及只保留銳化信號中數值較大的系數時,壓縮比大而重建光譜數據與原始光譜數據間的均方差較小。邵學廣等[24]將小波數據壓縮與窗口因子分析相結合,在很大程度上克服了用窗口因子分析直接處理原始信號時人工尋找最佳窗口的困難,在壓縮比高達8:1的情況下,原始信號中的有用信息幾乎沒有丟失,窗口因子分析的解析時間大為縮短。Bos M等[25]用Daubechies小波對紅外光譜數據進行壓縮,壓縮後的數據作為人工神經網路演算法的輸入接點,從而提高了人工神經網路的訓練速度,預測的效果也比直接用光譜數據訓練的要好。
2.3 小波多尺度分析
在多尺度分析方面的應用主要是對化學電信號進行小波分解,使原來單一的時域信號分解為系列不同頻率尺度下的信號,然後對這些信號進行分析研究。
小波在色譜信號處理方面的應用,主要是對重疊色譜峰的解析。邵學廣[26-27]等對苯、甲苯、乙苯三元體系色譜重疊峰信號小波變換後的某些頻率段進行放大,然後重構色譜信號,使重疊色譜峰得到了分離,定量分析結果得到了良好的線性關系。此後邵學廣[28]等利用了譜峰提取法對植物激素重疊色譜峰作了定量計算,此法表明,利用小波變換從重疊色譜信號中提取的各組分的峰高與濃度之間仍然具有良好的線性關系。
重疊伏安峰的分辨是電分析化學中一個長期存在的難題。當溶液中存在兩種或更多的電活性物質,而這些物質的氧化(或還原)電位又很靠近時,就會不可避免地出現重疊峰的現象,而給進一步的定性、定量分析帶來了很大困難。因此,人們做了較多的工作去解決這一難題。數學方法是目前處理重疊峰的重要手段,如Fourier變換去卷積以及曲線擬合。曲線擬合通常用來獲得「定量」的信息,但這種方法有較多的人為因素,重疊峰包含的峰的個數,相對強度都是靠假設得來,因而可能引入嚴重的誤差;去卷積方法則是一種頻域分析手段,但該方法需先找出一個函數來描述伏安峰,然後再根據這個函數來確定去卷積函數,因此,去卷積函數的確定是比較麻煩的,尤其是對不可逆電極過程,無法找到一個合適的函數表達式,而且該方法還需經正、反Fourier變換,比較繁瑣費時, 而小波分析的出現成了電分析化學家關注的熱點。
陳潔等[29]用DOG小波函數處理差分脈沖實驗數據,通過選擇合適的伸縮因子,成功地延長了用DPV法測定Cu2+的線性范圍。鄭建斌等[30-31]將小波變換用於示波計時電位信號的處理,在有用信息提取、重疊峰分辨等方面進行了系統的研究。王洪等[32]將小波邊緣檢測的思想用於電位滴定終點的確定,找到了一種判斷終點准確的終點判斷方法。鄭小萍等[33]將樣條小波變換技術用於分辨重疊的伏安峰,以選定的分辨因子作用於樣條小波濾波器,構造了一個小波峰分辨器,用它來直接處理重疊的伏安峰,取得了較好的分離效果,被處理重疊峰可達到完全基線分離,且峰位置和峰面積的相對誤差均較小。
對於紅外光譜圖,目前也是通過對紅外譜圖進行小波分解,以提高紅外譜圖的分辯率。陳潔[34]等對輻射合成的丙烯醯胺、丙烯酸鈉共聚物水凝膠的紅外光譜信號經小波處理後,使其特徵吸收帶較好地得到分離,成功地提高了紅外光譜圖的解析度。謝啟桃[35]等對不同晶型聚丙烯紅外光譜圖作了小波變換,也得到了可用以區分聚丙烯a、b兩晶型的紅外光譜圖。
3 展望
小波變換由於其優良的局部分析能力,使其在分析化學信號的濾噪、數據壓縮和譜峰的分離方面得到了很好的應用。本人通過對小波變換在化學中應用的探索,認為對於分析化學中各種電信號的平滑、濾波還有待作更深入的研究,以設計出更為合理有效的小波濾波器,以消除由於平滑而導至的尖銳信號的峰高及峰面積的變化或由於去噪而帶來的尖銳信號附近的不應有的小峰的出現;對於重疊峰的分離及其定量計算,還應該探討如色譜峰基線的確定方法以及待分離頻率段的倍乘系數的確定方法;另外對於色譜峰的保留指數定性問題,由於不同化合物在某一確定的分析條件下有可能會出現保留值相同的情況,這將使在未知樣中加標準的峰高疊加法定性或外部標准物對照定性變得困難,我們是否可能對色譜峰進行小波分解,然後在不同的尺度上對其進行考察,以尋求色譜峰的小波定性方法,這可能是個可以進一步研究的問題。
小波變換將在分析化學領域得到更加廣泛的應用,特別對於分析化學中的多元定量分析法,如多元線性回歸法(MLR),主成分回歸法(PCR),偏最小二乘法(PLS)等方法及人工神經網路(ANN)將會同小波變換進行有機的結合,以消除各種雜訊干擾對定量分析的影響;或對相關數據進行壓縮以減少待分析數據的冗餘,提高分析精度和大大減少計算量提高分析速度。小波變換將會成為分析化學中定量和定性分析的一種非常重要的工具。
⑤ 什麼是「小波神經網路」能幹什麼用呀
小波神經網路(Wavelet Neural Network, WNN)是在小波分析研究獲得突破的基礎上提出的一種人工神經網路。它是基於小波分析理論以及小波變換所構造的一種分層的、多解析度的新型人工神經網路模型。
即用非線性小波基取代了通常的非線性Sigmoid 函數,其信號表述是通過將所選取的小波基進行線性疊加來表現的。它避免了BP 神經網路結構設計的盲目性和局部最優等非線性優化問題,大大簡化了訓練,具有較強的函數學習能力和推廣能力及廣闊的應用前景。
「小波神經網路」的應用:
1、在影像處理方面,可以用於影像壓縮、分類、識別與診斷,去污等。在醫學成像方面的減少B超、CT、核磁共振成像的時間,提高解析度等。
2、在信號分析中的應用也十分廣泛。它可以用於邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數、信號的識別與診斷以及多尺度邊緣偵測等。
3、在工程技術等方面的應用。包括電腦視覺、電腦圖形學、曲線設計、湍流、遠端宇宙的研究與生物醫學方面。
(5)小波分析演算法擴展閱讀:
小波神經網路這方面的早期工作大約開始於1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神經網路的應用與實現》中從理論上對小波神經網路進行了較為詳細的論述。近年來,人們在小波神經網路的理論和應用方面都開展了不少研究工作。
小波神經網路具有以下特點:首先,小波基元及整個網路結構的確定有可靠的理論根據,可避免BP 神經網路等結構設計上的盲目性;其次,網路權系數線性分布和學習目標函數的凸性,使網路訓練過程從根本上避免了局部最優等非線性優化問題;第三,有較強的函數學習能力和推廣能力。