當前位置:首頁 » 操作系統 » 搜索推薦演算法

搜索推薦演算法

發布時間: 2023-04-29 02:35:24

Ⅰ 搜索引擎的排序演算法都有哪些是怎麼實現的

2.1基於詞頻統計——詞位置加權的搜索引擎
利用關鍵詞在文檔中出現的頻率和位置排序是搜索引擎最早期排序的主要思想,其技術發展也最為成熟,是第一階段搜索引擎的主要排序技術,應用非常廣泛,至今仍是許多搜索引擎的核心排序技術。其基本原理是:關鍵詞在文檔中詞頻越高,出現的位置越重要,則被認為和檢索詞的相關性越好。
1)詞頻統計
文檔的詞頻是指查詢關鍵詞在文檔中出現的頻率。查詢關鍵詞詞頻在文檔中出現的頻率越高,其相關度越大。但當關鍵詞為常用詞時,使其對相關性判斷的意義非常小。TF/IDF很好的解決了這個問題。TF/IDF演算法被認為是信息檢索中最重要的發明。TF(Term Frequency):單文本詞彙頻率,用關鍵詞的次數除以網頁的總字數,其商稱為「關鍵詞的頻率」。IDF(Inverse Document Frequency):逆文本頻率指數,其原理是,一個關鍵詞在N個網頁中出現過,那麼N越大,此關鍵詞的權重越小,反之亦然。當關鍵詞為常用詞時,其權重極小,從而解決詞頻統計的缺陷。
2)詞位置加權
在搜索引擎中,主要針對網頁進行詞位置加權。所以,頁面版式信息的分析至關重要。通過對檢索關鍵詞在Web頁面中不同位置和版式,給予不同的權值,從而根據權值來確定所搜索結果與檢索關鍵詞相關程度。可以考慮的版式信息有:是否是標題,是否為關鍵詞,是否是正文,字體大小,是否加粗等等。同時,錨文本的信息也是非常重要的,它一般能精確的描述所指向的頁面的內容。
2.2基於鏈接分析排序的第二代搜索引擎
鏈接分析排序的思想起源於文獻引文索引機制,即論文被引用的次數越多或被越權威的論文引用,其論文就越有價值。鏈接分析排序的思路與其相似,網頁被別的網頁引用的次數越多或被越權威的網頁引用,其價值就越大。被別的網頁引用的次數越多,說明該網頁越受歡迎,被越權威的網頁引用,說明該網頁質量越高。鏈接分析排序演算法大體可以分為以下幾類:基於隨機漫遊模型的,比如PageRank和Repution演算法;基於概率模型的,如SALSA、PHITS;基於Hub和Authority相互加強模型的,如HITS及其變種;基於貝葉斯模型的,如貝葉斯演算法及其簡化版本。所有的演算法在實際應用中都結合傳統的內容分析技術進行了優化。本文主要介紹以下幾種經典排序演算法:
1)PageRank演算法
PageRank演算法由斯坦福大學博士研究生Sergey Brin和Lwraence Page等提出的。PageRank演算法是Google搜索引擎的核心排序演算法,是Google成為全球最成功的搜索引擎的重要因素之一,同時開啟了鏈接分析研究的熱潮。
PageRank演算法的基本思想是:頁面的重要程度用PageRank值來衡量,PageRank值主要體現在兩個方面:引用該頁面的頁面個數和引用該頁面的頁面重要程度。一個頁面P(A)被另一個頁面P(B)引用,可看成P(B)推薦P(A),P(B)將其重要程度(PageRank值)平均的分配P(B)所引用的所有頁面,所以越多頁面引用P(A),則越多的頁面分配PageRank值給P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的頁面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。
其計算公式為:

PR(A):頁面A的PageRank值;
d:阻尼系數,由於某些頁面沒有入鏈接或者出鏈接,無法計算PageRank值,為避免這個問題(即LinkSink問題),而提出的。阻尼系數常指定為0.85。
R(Pi):頁面Pi的PageRank值;
C(Pi):頁面鏈出的鏈接數量;
PageRank值的計算初始值相同,為了不忽視被重要網頁鏈接的網頁也是重要的這一重要因素,需要反復迭代運算,據張映海撰文的計算結果,需要進行10次以上的迭代後鏈接評價值趨於穩定,如此經過多次迭代,系統的PR值達到收斂。
PageRank是一個與查詢無關的靜態演算法,因此所有網頁的PageRank值均可以通過離線計算獲得。這樣,減少了用戶檢索時需要的排序時間,極大地降低了查詢響應時間。但是PageRank存在兩個缺陷:首先PageRank演算法嚴重歧視新加入的網頁,因為新的網頁的出鏈接和入鏈接通常都很少,PageRank值非常低。另外PageRank演算法僅僅依靠外部鏈接數量和重要度來進行排名,而忽略了頁面的主題相關性,以至於一些主題不相關的網頁(如廣告頁面)獲得較大的PageRank值,從而影響了搜索結果的准確性。為此,各種主題相關演算法紛紛涌現,其中以以下幾種演算法最為典型。
2)Topic-Sensitive PageRank演算法
由於最初PageRank演算法中是沒有考慮主題相關因素的,斯坦福大學計算機科學系Taher Haveli-wala提出了一種主題敏感(Topic-Sensitive)的PageRank演算法解決了「主題漂流」問題。該演算法考慮到有些頁面在某些領域被認為是重要的,但並不表示它在其它領域也是重要的。
網頁A鏈接網頁B,可以看作網頁A對網頁B的評分,如果網頁A與網頁B屬於相同主題,則可認為A對B的評分更可靠。因為A與B可形象的看作是同行,同行對同行的了解往往比不是同行的要多,所以同行的評分往往比不是同行的評分可靠。遺憾的是TSPR並沒有利用主題的相關性來提高鏈接得分的准確性。
3)HillTop演算法
HillTop是Google的一個工程師Bharat在2001年獲得的專利。HillTop是一種查詢相關性鏈接分析演算法,克服了的PageRank的查詢無關性的缺點。HillTop演算法認為具有相同主題的相關文檔鏈接對於搜索者會有更大的價值。在Hilltop中僅考慮那些用於引導人們瀏覽資源的專家頁面(Export Sources)。Hilltop在收到一個查詢請求時,首先根據查詢的主題計算出一列相關性最強的專家頁面,然後根據指向目標頁面的非從屬專家頁面的數量和相關性來對目標頁面進行排序。
HillTop演算法確定網頁與搜索關鍵詞的匹配程度的基本排序過程取代了過分依靠PageRank的值去尋找那些權威頁面的方法,避免了許多想通過增加許多無效鏈接來提高網頁PageRank值的作弊方法。HillTop演算法通過不同等級的評分確保了評價結果對關鍵詞的相關性,通過不同位置的評分確保了主題(行業)的相關性,通過可區分短語數防止了關鍵詞的堆砌。
但是,專家頁面的搜索和確定對演算法起關鍵作用,專家頁面的質量對演算法的准確性起著決定性作用,也就忽略了大多數非專家頁面的影響。專家頁面在互聯網中占的比例非常低(1.79%),無法代表互聯網全部網頁,所以HillTop存在一定的局限性。同時,不同於PageRank演算法,HillTop演算法的運算是在線運行的,對系統的響應時間產生極大的壓力。
4)HITS
HITS(Hyperlink Inced Topic Search)演算法是Kleinberg在1998年提出的,是基於超鏈接分析排序演算法中另一個最著名的演算法之一。該演算法按照超鏈接的方向,將網頁分成兩種類型的頁面:Authority頁面和Hub頁面。Authority頁面又稱權威頁面,是指與某個查詢關鍵詞和組合最相近的頁面,Hub頁面又稱目錄頁,該頁面的內容主要是大量指向Authority頁面的鏈接,它的主要功能就是把這些Authority頁面聯合在一起。對於Authority頁面P,當指向P的Hub頁面越多,質量越高,P的Authority值就越大;而對於Hub頁面H,當H指向的Authority的頁面越多,Authority頁面質量越高,H的Hub值就越大。對整個Web集合而言,Authority和Hub是相互依賴、相互促進,相互加強的關系。Authority和Hub之間相互優化的關系,即為HITS演算法的基礎。
HITS基本思想是:演算法根據一個網頁的入度(指向此網頁的超鏈接)和出度(從此網頁指向別的網頁)來衡量網頁的重要性。在限定范圍之後根據網頁的出度和入度建立一個矩陣,通過矩陣的迭代運算和定義收斂的閾值不斷對兩個向量Authority和Hub值進行更新直至收斂。
實驗數據表明,HITS的排名准確性要比PageRank高,HITS演算法的設計符合網路用戶評價網路資源質量的普遍標准,因此能夠為用戶更好的利用網路信息檢索工具訪問互聯網資源帶來便利。
但卻存在以下缺陷:首先,HITS演算法只計算主特徵向量,處理不好主題漂移問題;其次,進行窄主題查詢時,可能產生主題泛化問題;第三,HITS演算法可以說一種實驗性質的嘗試。它必須在網路信息檢索系統進行面向內容的檢索操作之後,基於內容檢索的結果頁面及其直接相連的頁面之間的鏈接關系進行計算。盡管有人嘗試通過演算法改進和專門設立鏈接結構計算伺服器(Connectivity Server)等操作,可以實現一定程度的在線實時計算,但其計算代價仍然是不可接受的。
2.3基於智能化排序的第三代搜索引擎
排序演算法在搜索引擎中具有特別重要的地位,目前許多搜索引擎都在進一步研究新的排序方法,來提升用戶的滿意度。但目前第二代搜索引擎有著兩個不足之處,在此背景下,基於智能化排序的第三代搜索引擎也就應運而生。
1)相關性問題
相關性是指檢索詞和頁面的相關程度。由於語言復雜,僅僅通過鏈接分析及網頁的表面特徵來判斷檢索詞與頁面的相關性是片面的。例如:檢索「稻瘟病」,有網頁是介紹水稻病蟲害信息的,但文中沒有「稻瘟病」這個詞,搜索引擎根本無法檢索到。正是以上原因,造成大量的搜索引擎作弊現象無法解決。解決相關性的的方法應該是增加語意理解,分析檢索關鍵詞與網頁的相關程度,相關性分析越精準,用戶的搜索效果就會越好。同時,相關性低的網頁可以剔除,有效地防止搜索引擎作弊現象。檢索關鍵詞和網頁的相關性是在線運行的,會給系統相應時間很大的壓力,可以採用分布式體系結構可以提高系統規模和性能。
2)搜索結果的單一化問題
在搜索引擎上,任何人搜索同一個詞的結果都是一樣。這並不能滿足用戶的需求。不同的用戶對檢索的結果要求是不一樣的。例如:普通的農民檢索「稻瘟病」,只是想得到稻瘟病的相關信息以及防治方法,但農業專家或科技工作者可能會想得到稻瘟病相關的論文。
解決搜索結果單一的方法是提供個性化服務,實現智能搜索。通過Web數據挖掘,建立用戶模型(如用戶背景、興趣、行為、風格),提供個性化服務。

Ⅱ 推薦演算法簡介

在這個時代,無論是信息消費者還是信息生產者都遇到了很大的挑戰:作為信息消費者,如何從大量信息中找到自己感興趣的信息是一件非常困難的事情;作為信息生產者, 如何讓自己生產的信息脫穎而出,受到廣大用戶的關注,也是一件非常困難的事情。推薦系統就是解決這一矛盾的重要工具。推薦系統的任務就是聯系用戶和信息,一方面幫助用戶發現對自己有價值的信息,另一方面讓信息能夠展現在對它感興趣的用戶面前,從而實現信息消費者和信息 生產者的雙贏。和搜索引擎不同的是,推薦系統不需要用戶提供明確的需求,而是通過分析用戶的歷史行為給用 戶的興趣建模,從而主動給用戶推薦能夠滿足他們興趣和需求的信息 個性化推薦的成功需要兩個條件。第一是存在 信息過載 ,因為如果用戶可以很容易地從所有物品中找到喜歡的物品,就不需要個性化推薦。第二用 戶大部分時候沒有特別明確的需求 ,因為用戶沒有明確的需求,可以直接通過搜索引擎找到感興趣的物品。

一個完整的推薦系統一般存在3個參與方:用戶、物品提供者和提供推薦系統的網站。以圖書推薦為例, 首先,推薦系統需要滿足用戶的需求,給用戶推薦那些令他們感興趣的圖書。其次,推薦系統要讓各出版社的書都能夠被推薦給對其感興趣的用戶,而不是只推薦幾個大型出版社的書。最後, 好的推薦系統設計,能夠讓推薦系統本身收集到高質量的用戶反饋,不斷完善推薦的質量,增加 用戶和網站的交互,提高網站的收入。因此在評測一個推薦演算法時,需要同時考慮三方的利益, 一個好的推薦系統是能夠令三方共贏的系統。

推薦系統中,主要有3種評測推薦效果的實驗方法,即離線實驗(offline experiment)、用戶調查(user study)和在線實驗(online experiment)。

2.1 離線實驗

離線實驗的方法一般由如下幾個步驟構成: (1) 通過日誌系統獲得用戶行為數據,並按照一定格式生成一個標準的數據集; (2) 將數據集按照一定的規則分成訓練集和測試集; (3) 在訓練集上訓練用戶興趣模型,在測試集上進行預測; (4) 通過事先定義的離線指標評測演算法在測試集上的預測結果。

從上面的步驟可以看到,推薦系統的離線實驗都是在數據集上完成的,也就是說它不需要一個實際的系統來供它實驗,而只要有一個從實際系統日誌中提取的數據集即可。這種實驗方法的 好處是不需要真實用戶參與,可以直接快速地計算出來,從而方便、快速地測試大量不同的演算法。它的主要缺點是無法獲得很多商業上關注的指標,如點擊率、轉化率等,而找到和商業指標非常相關的離線指標也是很困難的事情

2.2 用戶調查

3.3 在線實驗

在完成離線實驗和必要的用戶調查後,可以將推薦系統上線做 AB測試 ,將它和舊的演算法進行比較。 AB測試 是一種很常用的在線評測演算法的實驗方法。它通過一定的規則將用戶隨機分成幾組,並對不同組用戶採取不同的演算法,然後通過統計不同組用戶的各種不同的評測指標比較不同演算法的好壞。 AB測試的優點是可以公平獲得不同演算法實際在線時的性能指標,包括商業上關注的指標。 AB測試的缺點主要是周期比較長,必須進行長期的實驗才能得到可靠的結果。因此一般不會用 AB測試測試所有的演算法,而只是用它測試那些在離線實驗和用戶調查中表現很好的演算法。其次, 一個大型網站的AB測試系統的設計也是一項復雜的工程。

一般來說,一個新的推薦演算法最終上線,需要完成上面所說的3個實驗。 1)首先,需要通過離線實驗證明它在很多離線指標上優於現有的演算法。 2)然後,需要通過用戶調查確定它的用戶滿意度不低於現有的演算法。 3)最後,通過在線的AB測試確定它在我們關心的指標上。

本節將介紹各種推薦系統的評測指標。這些評測指標可用於評價推薦系統各方面的性能。這 些指標有些可以定量計算,有些只能定性描述,有些可以通過離線實驗計算,有些需要通過用戶 調查獲得,還有些只能在線評測。

(1) 用戶滿意度

用戶作為推薦系統的重要參與者,其滿意度是評測推薦系統的最重要指標。但是,用戶滿意度沒有辦法離線計算,只能通過用戶調查或者在線實驗獲得。

在在線系統中,用戶滿意度主要通過一些 對用戶行為的統計得到 。比如在電子商務網站中,用戶如果購買了推薦的商品,就表示他們在一定程度上滿意。因此,我們可以 利用購買率度量用 戶的滿意度 。此外,有些網站會通過設計一些用戶 反饋界面收集用戶滿意度 。比如在視頻網站中,都有對推薦結果滿意或者不滿意的 反饋按鈕 ,通過統計兩種按鈕的單擊情況就可以度量系統的用戶滿意度。更一般的情況下,我們可以用 點擊率、用戶停留時間和轉化率等指標度量 用戶的滿意度。

(2) 預測准確度

預測准確度度量一個推薦系統或者推薦演算法預測用戶行為的能力。這個指標是最重要的推薦系統離線評測指標

在計算該指標時需要有一個離線的數據集,該數據集包含用戶的歷史行為記錄。然後,將該數據集通過時間分成訓練集和測試集。最後,通過在訓練集上建立用戶的行為和興趣模型預測用戶在測試集上的行為,並計算預測行為和測試集上實際行為的重合度作為預測准確度。 預測准確度指標有分為以下幾種:

評分預測:

預測用戶對物品評分的行為成為評分預測,在評分預測中,預測准確度一般通過均方根誤差RMSE和平均絕對誤差MAE計算,對於測試集中的一個用戶u和物品i,令[圖片上傳失敗...(image-62a797-1560412790460)] 是用戶u對物品i的實際評分,而[圖片上傳失敗...(image-28cfbc-1560412790460)] 是推薦演算法給出的預測評分,那麼RMSE定義為:

其中T為樣本個數

MAE採用絕對值計算預測誤差,它的定義為:

TopN推薦

網站在提供推薦服務時,一般是給用戶一個個性化的推薦列表,這種推薦叫做TopN推薦。TopN推薦的預測准確率一般通過准確率(precision)/召回率(recall)度量。 令R(u)是根據用戶在訓練集上的行為給用戶作出的推薦列表,而T(u)是用戶在測試集上的行為列表。那麼,推薦結果的召回率定義為:

推薦結果准確率定義:

(3) 覆蓋率

覆蓋率(coverage)描述一個推薦系統對物品長尾的發掘能力。覆蓋率有不同的定義方法,最簡單的定義為推薦系統能夠推薦出來的物品占總物品集合的比例。假設系統的用戶集合U,推薦系統給每個用戶推薦一個長度為N的物品集合R(u)。那麼推薦系統的覆蓋率可以通過下面的公式計算:

I為總物品數

此外,從上面的定義也可以看到,熱門排行榜的推薦覆蓋率是很低的,它只會 推薦那些熱門的物品,這些物品在總物品中占的比例很小。一個好的推薦系統不僅需要有比較高的用戶滿意度,也要有較高的覆蓋率。

但是上面的定義過於粗略。覆蓋率為100%的系統可以有無數的物品流行度分布。為了更細致地描述推薦系統發掘長尾的能力,需要統計推薦列表中不同物品出現次數的分布。如果所有的 物品都出現在推薦列表中,且出現的次數差不多,那麼推薦系統發掘長尾的能力就很好。因此, 可以通過研究物品在推薦列表中出現次數的分布描述推薦系統挖掘長尾的能力。如果這個分布比 較平,那麼說明推薦系統的覆蓋率較高,而如果這個分布較陡峭,說明推薦系統的覆蓋率較低。 在資訊理論和經濟學中有兩個著名的指標可以用來定義覆蓋率。第一個是信息熵:

其中:n代表推薦列表中物品類別個數,p(i)代表每個類別的所佔的比率

第二個指標是基尼系數:

(4) 多樣性

為了滿足用戶廣泛的興趣,推薦列表需要能夠覆蓋用戶不同的興趣領域,即推薦結果需要具有多樣性。多樣性推薦列表的好處用一句俗話表示就是(不在一棵樹上弔死)。盡管用戶的興趣在較長的時間跨度中是一樣的。但具體到用戶訪問推薦系統的某一時刻,其興趣往往是單一的,那麼如果推薦列表只能覆蓋用戶的一個興趣點,而這個興趣點不是用戶這個時刻的興趣點,推薦結果就不會讓用戶滿意。反之如果推薦列表表較多樣,覆蓋用戶絕大多數的興趣點,那麼久會增加用戶找到感興趣物品的概率。因此給用戶的推薦列表也需要滿足用戶廣泛的興趣,即具有多樣性。

多樣性描述了推薦列表中物品兩兩之間的不相似性,因此,多樣性和相似性是對應的。假設s(i, j) ∈Î[0,1] 定義了物品i和j之間的相似度,那麼用戶u的推薦列表R(u)的多樣性定義如下:

而推薦系統的整體多樣性可以定義為所有用戶推薦列表多樣性的平均值:

(5) 新穎性

新穎的推薦是指給用戶推薦那些他們以前沒有聽說過的物品。在一個網站中 實現新穎性 的最簡單辦法是,把那些用戶之前在網站中對其有過行為的物品從推薦列表中過濾掉。比如在一個視 頻網站中,新穎的推薦不應該給用戶推薦那些他們已經看過、打過分或者瀏覽過的視頻。 評測新穎度的最簡單方法是利用推薦結果的平均流行度,因為越不熱門的物品越 可能讓用戶覺得新穎。因此,如果推薦結果中物品的平均熱門程度較低,那麼推薦結果就可能有比較高的新穎性。

(6) 驚喜度

驚喜度(serendipity)是最近這幾年推薦系統領域最熱門的話題。如果推薦結果和用戶的歷史興趣不相似,但卻讓用戶覺得滿意,那麼就可以說推薦結果的驚喜度很高,而推薦的新穎性僅僅取決於用戶是否聽說過這個推薦結果。提高推薦驚喜度需要提高推薦結果的用戶滿意度,同時降低推薦結果和用戶歷史興趣的相似度。

(7) 信任度

度量推薦系統的信任度只能通過問卷調查的方式,詢問用戶是否信任推薦系統的推薦結果。 提高推薦系統的信任度主要有兩種方法。首先需要增加推薦系統的透明度(transparency), 而增加推薦系統透明度的主要辦法是提供推薦解釋。只有讓用戶了解推薦系統的運行機制,讓用 戶認同推薦系統的運行機制,才會提高用戶對推薦系統的信任度。其次是考慮用戶的社交網路 信息,利用用戶的好友信息給用戶做推薦,並且用好友進行推薦解釋。這是因為用戶對他們的 好友一般都比較信任,因此如果推薦的商品是好友購買過的,那麼他們對推薦結果就會相對比較信任

(8) 實時性

在很多網站中,因為物品(新聞、微博等)具有很強的時效性,所以需要在物品還具有時效 性時就將它們推薦給用戶。 推薦系統的實時性包括兩個方面。首先,推薦系統需要實時地更新推薦列表來滿足用戶新的 行為變化。實時性的第二個方面是推薦系統需要能夠將新加入系統的物品推薦給用戶。這主要考驗了推 薦系統處理物品冷啟動的能力。

(9) 健壯性

健壯性(即robust,魯棒 性)指標衡量了一個推薦系統抗擊作弊的能力。演算法健壯性的評測主要利用模擬攻擊。首先,給定一個數據集和一個演算法,可以用這個演算法 給這個數據集中的用戶生成推薦列表。然後,用常用的攻擊方法向數據集中注入雜訊數據,然後 利用演算法在注入雜訊後的數據集上再次給用戶生成推薦列表。最後,通過比較攻擊前後推薦列表 的相似度評測演算法的健壯性。如果攻擊後的推薦列表相對於攻擊前沒有發生大的變化,就說明算 法比較健壯

(10) 商業目標

很多時候,網站評測推薦系統更加註重網站的商業目標是否達成,而商業目標和網站的盈利模式是息息相關的

(11) 總結

上一節介紹了很多評測指標,但是在評測系統中還需要考慮評測維度,比如一個推薦演算法, 雖然整體性能不好,但可能在某種情況下性能比較好,而增加評測維度的目的就是知道一個演算法 在什麼情況下性能最好。這樣可以為融合不同推薦演算法取得最好的整體性能帶來參考。

一般來說,評測維度分為如下3種。 1) 用戶維度 :主要包括用戶的人口統計學信息、活躍度以及是不是新用戶等。 2) 物品維度 :包括物品的屬性信息、流行度、平均分以及是不是新加入的物品等。 3) 時間維度 :包括季節,是工作日還是周末,是白天還是晚上等。 如果能夠在推薦系統評測報告中包含不同維度下的系統評測指標,就能幫我們全面地了解推 薦系統性能,找到一個看上去比較弱的演算法的優勢,發現一個看上去比較強的演算法的缺點。

Ⅲ 論淘寶搜索推薦演算法排序機制及2021年搜索的方向。

[寫在前面]淘寶搜索引擎至今反復多次,搜索順序也從最初的統計模型升級到機械學習模型,到2010年為止沒有標簽沒有基礎標簽,隨著計算能力的提高,2010年後開始挖掘用戶的基礎標簽,從3年到2013年開始使用大規模的機械學習和實時特徵
但你有沒有想過為什麼2016-2017年的兩年是各種各樣的黑搜索盛行的一年,為什麼今天幾乎消失了?
最根本的原因是從統計演算法模型到機械學習模型的轉型期。
說白了,這時不收割就沒有收割的機會。因為統計模型即將退出歷史舞台。
因此,各路大神各自擴大了統計模型演算法中的影響因素。統計演算法無論在哪裡,點擊率和坑產都很容易搜索。
那兩年成了中小賣家的狂歡盛宴,很多大神的煙火也是旺盛的。
今天推薦演算法的第三代使用後,加上疫情的影響進行了鮮明的比較,真的很感慨。
淘寶真的沒有流量了嗎?電器商務真的做不到嗎?還是大家的思維沒有改變,停留在2016-2017年的黑搜宴會上不想醒來?
2017年、2018年、2019年是淘寶推薦演算法反復最快的3年,每年的演算法升級都不同,整體上到2019年9月為止統計演算法模型的影響因素還很大,從2019年下半年開始第三代推薦演算法後,全面的真正意義進入了以機械學習模型為中心的推薦演算法時代。
各路大神也無法驗證,加上百年疫情的影響,很多大神的隱蔽布也泄露了。
基本上以統計模型為主,訓練基本上沒有聲音,典型的是坑產游戲。
如果現在還能看到的話,基本上可以判斷他不是在訓練,而是在製作印刷用紙,一定會推薦使用資源,資源是多麼安全。
刷子的生產增加真的沒有效果嗎?不是我以前的文章說:不是不行,而是從坑產的角度思考,而是從改變競爭環境的角度思考,用補充書改變競爭環境,改變場地,有新的天地,任何手段都要為商業本質服務。
正文
概述統計演算法模型時代。
統計模型時代搜索引擎的排名是最原始的排名思考,如果你的類別不錯,關鍵詞比較正確,就能得到很大的流量,當時產品需求少,只要上下架的優化就能使產品上升。
到2016年為止沒有坑產游戲嗎?黑色搜索的效果不好嗎?其實,什麼時候坑產是最核心的機密,誰來教大家,什麼時候教的最多的是類別優化,關鍵詞優化,大部分優化都圍繞關鍵詞,電器商的老人想起了你什麼時候得到關鍵詞的人得到了世界。
有人告訴我做坑產,關鍵詞找到生意也來了。什麼時候知道坑產也沒有人給你刷子,大規模的補充書也出現在黑色搜索盛行的時期。
為什麼關鍵詞者得天下?
搜索關鍵詞是用戶目前意圖最直觀的表達,也是用戶表達意圖最直接的方式。
搜索的用戶購物意圖最強,成交意願也最強,現在搜索也是轉化率最高的流量來源。
統計時代關鍵詞背後直接依賴的是類別商品,只要製作類別和關鍵詞分詞即可,哪個時代最出現的黑馬通常是類別機會、關鍵詞機會、黑科學技術機會。
最基本的是商業本質,什麼時候產品需求少,沒有很多現在的類別,自己找類別,現在想想什麼概念。
記得什麼時候類別錯了,搜索也可以來。如果你的商品點擊反饋好的話,錯誤的類別沒有什麼影響,現在試試吧
搜索類是搜索的基礎。
什麼時候能稱霸,背後有商業邏輯,用戶行為數據好就行了。
但無論如何發展檢索都離不開關鍵詞。例如,上述關鍵詞是用戶表達意圖的最直接的方法,是當前消費者的檢索行為和購買行為發生了根本性的變化。
檢索依然根據消費者的行為數據和關鍵詞來判斷需求,這就是機械學習模型時代。
機器學習模式時代-推薦搜索演算法。
現在的商品體積和消費者購物行為的豐富性,統計演算法不能滿足檢索的本質要求。
所以現在搜索引擎開始發展深度學習模式更精細的建模-推薦搜索演算法,搜索排名更智能。
在此重點討論推薦檢索演算法,
2017、2018、2019是推薦檢索演算法真正意義發展的3年,3年3個系統版本每年更換一次,很多電器商人都不知道頭腦。
推薦檢索演算法和統計演算法模型的最大區別在於,Query的處理能力和演算法有召回機制
簡單表示推薦演算法的程序:
1:對檢索關鍵詞進行分詞、重寫的處理進行類別預判
2:根據用戶信息,即用戶以前的行為數據記錄和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作等信息存檔
3:根據檢索用戶信息,根據檢索用戶以前的行為數據檢索引擎和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作為等信息存檔3:根據檢索用戶信息的檢索用戶信息
也就是說,在第一關召回階段基本上與統計模型時代的最佳化途徑相同,核心是標題分詞和類別,現在最大的區別是根據用戶信息推薦最佳化,這是標簽和正確人群標簽圖像最佳化的基本意義。
為什麼現在一直在談論標簽,談論人標簽圖像?入池實際上是為了匹配真正的消費者用戶信息,通過直通車測試來判斷人群也是為了通過性別、年齡和購買力來優化匹配真正的消費者。
召回機制:
通過構建子單元索引方式加快商品檢索,不必經歷平台上億級的所有商品。該索引是搜索引擎中的倒置索引,利用倒置索引初始篩選商品的過程是召回階段。
在這個階段,不會進行復雜的計算,主要是根據現在的搜索條件進行商品候選集的快速圈定。
之後再進行粗排和精排,計算的復雜程度越來越高,計算的商品集合逐漸減少,最後完成整個排序過程。
主要召迴路徑分為
1:語言召回
2:向量召回
這些都是商業秘密不方便的說明,有興趣的是學習我們的在線會員課程標簽重疊游戲6是基於語言和向量召回的基礎邏輯實戰落地的課程。
下一階段進入粗行列,粗行列受這些因素的影響:
粗行列作為召回後的第一個門檻,希望用戶體驗以時間低的模型快速排序和篩選商品,第一關系將過濾到不適合本次檢索詞要求的商品
為了實現這個目的,首先要明確影響粗排名得分的因素
1:類別匹配得分和文本匹配得分,
2:商品信息質量(商品發布時間、商品等級、商品等級)
3:商品組合得分
點擊得分
交易得分賣方服務商業得分
在粗排列框架下,系統粗排列演算法根據商品類別的預測得分進行得分
點擊得分交易得分
交易得分賣方服務商業得分粗排列框架下,系統粗排列的大排列
最後是精排,檢索順序的主要目標是高相關性、高個性化的正確性。
每個用戶的喜好不同,系統會根據每個用戶的Query結合用戶信息進行召回。然後通過粗排後,商品數量從萬級下降到千級。
千級商品經排後直接向用戶展示,搜索過程中商品集合的思考和具體變化如下圖

前面的召回、粗排主要解決主題相關性,通過主題相關性的限制,首先縮小商品集合和我們的在線會員課程標簽
精排階段系是真正系統推薦演算法發揮真正威力時,應根據用戶行為反饋迅速進行機械學習建模,判斷用戶真實性、准確性和可持續控制性。
為什麼現在的游戲和黑色技術暫時出現,核心是系統演算法模型機械學習模型,系統分析用戶有問題,不正確,不穩定,維持性差,可以迅速調整。
也就是說,即使發現脆弱性,研究快速有效的方法,系統也會根據你精排階段的用戶行為迅速分析學習建模,發現模型有問題,你的玩法就結束了。
猜機器學習建模的速度有多快?
想玩黑色的東西早點死去吧。
現在使用的檢索順序模型主要是
CTR模型和CVR模型,具體模型過於復雜也不需要深入,但影響這兩種模型的最基本因素是用戶行為數據
真的不能假的,假的也不能假的演算法模型越來越智能化,演算法越來越強,只有回歸商業本質才能真正解決演算法模型背後真正想解決的問題,演算法基於商業邏輯。
2021年搜索向哪個方向發生變化:
2020年電器商人和螞蟻是不平凡的一年。2020年也是螞蟻從神壇上拉下來的元年,現在螞蟻有各種各樣的黑色。
基於中小賣家的走勢無疑是阿里必須正面面對的現實。
如何讓中小賣家迴流或留在平台上,搜索該怎麼做?
檢索一定是基於三方的考慮,買方、賣方和平台本身,現在市場上又開始提倡坑產搜索邏輯,坑產妖風又開始,根據推薦搜索演算法邏輯來談這個問題。
為什麼坑產思維是不死的小強,每次危機都會跳出來。
以統計模型為中心的坑產時代是淘寶從2003年到2015年一直使用的搜索演算法模型長達13年。
同時也是淘寶和中國網分紅的野蠻生長期,統計演算法模式讓太多電商賺錢。除了
之外,十年的奴役思維已經習慣了,在電器商圈,坑產游戲一定有人相信,其他人不一定被認可。所以,我們夾著尾巴發展的原因,時間真的可以證明一切,不用多說,做自己。
習慣性思維加上特殊時期的賺錢蝴蝶效應,使許多電器商人活在歷史的長夢中。正確地說,統計演算法模型的真正廢除是在2019年下半年。
同學說坑產永遠有效,我也這么想。
永遠有效的是起爆模型坑產權重驅動和統計演算法模型中的坑產排名不同。
起爆模型的坑產要素永遠有效,這永遠不會改變。
但是,如何有效地加上這個起爆模型的坑產權重,並不像模仿購物的意圖那麼簡單。
坑產游戲在2021年絕對不行。淘寶不會把現在的演算法系統換成15年前的。
基於三方利益:
購買者體驗
賣方利益
平台的發展
搜索肯定會向高精度和高控制性發展。以標簽為中心的用戶標簽圖像仍然是影響流量精度的基本因素。
必須從標簽的角度考慮和優化種子組的圖像。
通過種子組的圖像向相似人擴展到葉類人,業界喜好人最後向相關人擴展也是擴大流量的過程渠道。
基於推薦搜索演算法邏輯:
精密排列階段演算法更強,精度更高,轉化率更高,持續穩定性更強。
基於中小賣方流通的現狀,優化精排階段並非中小賣方能夠簡單接觸。
推薦演算法從搜索排名階段出現在哪個階段?
個人判斷
一是召回階段
二是粗排階段
上述提到召回階段的演算法簡單復蓋商品為萬級,排序規則也比較簡單,中小賣方在召回階段提高精度尤為重要。
在這個萬級商品庫中,如上下架的權重上升,中小賣方有機會上升到主頁,從子單元的索引召回中尋找機會。
或者根據中小賣方的新產品和中小賣方的店鋪水平進行特別優先搜索推薦,使中小賣方的新產品在低銷售狀態下顯示,可以實現錦囊演算法。
中小賣方有機會搜索主頁,不調用用戶信息直接打開主頁的展示權可能是中小賣方最大的支持。
根據召回階段的用戶行為數據,在粗排階段以比例融入用戶信息,即標簽的影響。
在初始召回階段,類別和分詞權重,看業者主圖場景反應背後的人們反饋,用系統引導,給中小賣方真正參考的流量方向和成交方向。
誰瘋狂地印刷用紙直接關閉黑屋,理解印刷用紙優化競爭場景,從優化人群的角度出發,適當放寬處罰。
通過召回階段,得到的用戶信息會影響粗體結果。在這個階段,用戶信息的權重比例不應該太大,流量卡也不應該太死。
在各檢索順序階段用戶信息,即用戶標簽對檢索的影響權重的問題。
這個方向我的個人觀點是可能的。

Ⅳ 快手搜索發現是怎麼排序出來的

好的,您的問題我來回答。快手搜索發現的排序是根據快手的推薦演算法來實現的。快手的推薦算枯汪法是基於用戶的行沒皮仔為和興趣,以及用戶的社交網路來排序的。握喚快手的推薦演算法會根據用戶的行為,興趣,社交網路,以及其他維度來推薦最符合用戶需求的內容。比如,如果用戶有興趣看某個類型的視頻,那麼快手的推薦演算法會優先推薦這類視頻;如果用戶有興趣看某個特定的視頻,那麼快手的推薦演算法會優先推薦這個視頻;如果用戶有興趣看某個特定的用戶,那麼快手的推薦演算法會優先推薦這個用戶發布的視頻;如果用戶有興趣看某個特定的話題,那麼快手的推薦演算法會優先推薦這個話題的視頻。總之,快手的推薦演算法會根據用戶的行為,興趣,社交網路,以及其他維度來推薦最符合用戶需求的內容,從而實現快手搜索發現的排序。

Ⅳ 推薦演算法簡介

寫在最前面:本文內容主要來自於書籍《推薦系統實踐》和《推薦系統與深度學習》。

推薦系統是目前互聯網世界最常見的智能產品形式。從電子商務、音樂視頻網站,到作為互聯網經濟支柱的在線廣告和新穎的在線應用推薦,到處都有推薦系統的身影。推薦演算法是推薦系統的核心,其本質是通過一定的方式將用戶和物品聯系起來,而不同的推薦系統利用了不同的方式。

推薦系統的主要功能是以個性化的方式幫助用戶從極大的搜索空間中快速找到感興趣的對象。因此,目前所用的推薦系統多為個性化推薦系統。個性化推薦的成功應用需要兩個條件:

在推薦系統的眾多演算法中,基於協同的推薦和基於內容的推薦在實踐中得到了最廣泛的應用。本文也將從這兩種演算法開始,結合時間、地點上下文環境以及社交環境,對常見的推薦演算法做一個簡單的介紹。

基於內容的演算法的本質是對物品內容進行分析,從中提取特徵,然後基於用戶對何種特徵感興趣來推薦含有用戶感興趣特徵的物品。因此,基於內容的推薦演算法有兩個最基本的要求:

下面我們以一個簡單的電影推薦來介紹基於內容的推薦演算法。

現在有兩個用戶A、B和他們看過的電影以及打分情況如下:

其中問好(?)表示用戶未看過。用戶A對《銀河護衛隊 》《變形金剛》《星際迷航》三部科幻電影都有評分,平均分為 4 .7 分 ( (5+4+5 ) / 3=4.7 );對《三生三世》《美人魚》《北京遇上西雅圖》三部愛情電影評分平均分為 2.3 分 ( ( 3十2+2 ) /3=2.3 )。現在需要給A推薦電影,很明顯A更傾向於科幻電影,因此推薦系統會給A推薦獨立日。而對於用戶B,通過簡單的計算我們可以知道更喜歡愛情電影,因此給其推薦《三生三世》。當然,在實際推薦系統中,預測打分比這更加復雜些,但是其原理是一樣的。

現在,我們可以將基於內容的推薦歸納為以下四個步驟:

通過上面四步就能快速構建一個簡單的推薦系統。基於內容的推薦系統通常簡單有效,可解釋性好,沒有物品冷啟動問題。但他也有兩個明顯的缺點:

最後,順便提一下特徵提取方法:對於某些特徵較為明確的物品,一般可以直接對其打標簽,如電影類別。而對於文本類別的特徵,則主要是其主題情感等,則些可以通過tf-idf或LDA等方法得到。

基於協同的演算法在很多地方也叫基於鄰域的演算法,主要可分為兩種:基於用戶的協同演算法和基於物品的協同演算法。

啤酒和尿布的故事在數據挖掘領域十分有名,該故事講述了美國沃爾瑪超市統計發現啤酒和尿布一起被購買的次數非常多,因此將啤酒和尿布擺在了一起,最後啤酒和尿布的銷量雙雙增加了。這便是一個典型的物品協同過濾的例子。

基於物品的協同過濾指基於物品的行為相似度(如啤酒尿布被同時購買)來進行物品推薦。該演算法認為,物品A和物品B具有很大相似度是因為喜歡物品A的用戶大都也喜歡物品B。

基於物品的協同過濾演算法主要分為兩步:

基於物品的協同過濾演算法中計算物品相似度的方法有以下幾種:
(1)基於共同喜歡物品的用戶列表計算。

此外,John S. Breese再其論文中還提及了IUF(Inverse User Frequence,逆用戶活躍度)的參數,其認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶,應該增加IUF參數來修正物品相似度的公式:

上面的公式只是對活躍用戶做了一種軟性的懲罰, 但對於很多過於活躍的用戶, 比如某位買了當當網80%圖書的用戶, 為了避免相似度矩陣過於稠密, 我們在實際計算中一般直接忽略他的興趣列表, 而不將其納入到相似度計算的數據集中。

(2)基於餘弦相似度計算。

(3)熱門物品的懲罰。
從上面(1)的相似度計算公式中,我們可以發現當物品 i 被更多人購買時,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都會增長。對於熱門物品,分子 N(i) ∩ N(j) 的增長速度往往高於 N(i),這就會使得物品 i 和很多其他的物品相似度都偏高,這就是 ItemCF 中的物品熱門問題。推薦結果過於熱門,會使得個性化感知下降。以歌曲相似度為例,大部分用戶都會收藏《小蘋果》這些熱門歌曲,從而導致《小蘋果》出現在很多的相似歌曲中。為了解決這個問題,我們對於物品 i 進行懲罰,例如下式, 當α∈(0, 0.5) 時,N(i) 越小,懲罰得越厲害,從而使熱門物品相關性分數下降( 博主註:這部分未充分理解 ):

此外,Kary pis在研究中發現如果將ItemCF的相似度矩陣按最大值歸一化, 可以提高推薦的准確率。 其研究表明, 如果已經得到了物品相似度矩陣w, 那麼可以用如下公式得到歸一化之後的相似度矩陣w':

歸一化的好處不僅僅在於增加推薦的准確度,它還可以提高推薦的覆蓋率和多樣性。一般來說,物品總是屬於很多不同的類,每一類中的物品聯系比較緊密。假設物品分為兩類——A和B, A類物品之間的相似度為0.5, B類物品之間的相似度為0.6, 而A類物品和B類物品之間的相似度是0.2。 在這種情況下, 如果一個用戶喜歡了5個A類物品和5個B類物品, 用ItemCF給他進行推薦, 推薦的就都是B類物品, 因為B類物品之間的相似度大。 但如果歸一化之後, A類物品之間的相似度變成了1, B類物品之間的相似度也是1, 那麼這種情況下, 用戶如果喜歡5個A類物品和5個B類物品, 那麼他的推薦列表中A類物品和B類物品的數目也應該是大致相等的。 從這個例子可以看出, 相似度的歸一化可以提高推薦的多樣性。

那麼,對於兩個不同的類,什麼樣的類其類內物品之間的相似度高,什麼樣的類其類內物品相似度低呢?一般來說,熱門的類其類內物品相似度一般比較大。如果不進行歸一化,就會推薦比較熱門的類裡面的物品,而這些物品也是比較熱門的。因此,推薦的覆蓋率就比較低。相反,如果進行相似度的歸一化,則可以提高推薦系統的覆蓋率。

最後,利用物品相似度矩陣和用戶打過分的物品記錄就可以對一個用戶進行推薦評分:

基於用戶的協同演算法與基於物品的協同演算法原理類似,只不過基於物品的協同是用戶U購買了A物品,會計算經常有哪些物品與A一起購買(也即相似度),然後推薦給用戶U這些與A相似的物品。而基於用戶的協同則是先計算用戶的相似性(通過計算這些用戶購買過的相同的物品),然後將這些相似用戶購買過的物品推薦給用戶U。

基於用戶的協同過濾演算法主要包括兩個步驟:

步驟(1)的關鍵是計算用戶的興趣相似度,主要是利用用戶的行為相似度計算用戶相似度。給定用戶 u 和 v,N(u) 表示用戶u曾經有過正反饋(譬如購買)的物品集合,N(v) 表示用戶 v 曾經有過正反饋的物品集合。那麼我們可以通過如下的 Jaccard 公式簡單的計算 u 和 v 的相似度:

或通過餘弦相似度:

得到用戶之間的相似度之後,UserCF演算法會給用戶推薦和他興趣最相似的K個用戶喜歡的物品。如下的公式度量了UserCF演算法中用戶 u 對物品 i 的感興趣程度:

首先回顧一下UserCF演算法和ItemCF演算法的推薦原理:UserCF給用戶推薦那些和他有共同興趣愛好的用戶喜歡的物品, 而ItemCF給用戶推薦那些和他之前喜歡的物品具有類似行為的物品。

(1)從推薦場景考慮
首先從場景來看,如果用戶數量遠遠超過物品數量,如購物網站淘寶,那麼可以考慮ItemCF,因為維護一個非常大的用戶關系網是不容易的。其次,物品數據一般較為穩定,因此物品相似度矩陣不必頻繁更新,維護代價較小。

UserCF的推薦結果著重於反應和用戶興趣相似的小群體的熱點,而ItemCF的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反應了用戶所在小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反應了用戶自己的個性傳承。因此UserCF更適合新聞、微博或微內容的推薦,而且新聞內容更新頻率非常高,想要維護這樣一個非常大而且更新頻繁的表無疑是非常難的。

在新聞類網站中,用戶的興趣愛好往往比較粗粒度,很少會有用戶說只看某個話題的新聞,而且往往某個話題也不是每天都會有新聞。 個性化新聞推薦更強調新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,個性化是補充,所以 UserCF 給用戶推薦和他有相同興趣愛好的人關注的新聞,這樣在保證了熱點和時效性的同時,兼顧了個性化。

(2)從系統多樣性(也稱覆蓋率,指一個推薦系統能否給用戶提供多種選擇)方面來看,ItemCF的多樣性要遠遠好於UserCF,因為UserCF更傾向於推薦熱門物品。而ItemCF具有較好的新穎性,能夠發現長尾物品。所以大多數情況下,ItemCF在精度上較小於UserCF,但其在覆蓋率和新穎性上面卻比UserCF要好很多。

在介紹本節基於矩陣分解的隱語義模型之前,讓我們先來回顧一下傳統的矩陣分解方法SVD在推薦系統的應用吧。

基於SVD矩陣分解在推薦中的應用可分為如下幾步:

SVD在計算前會先把評分矩陣 A 缺失值補全,補全之後稀疏矩陣 A 表示成稠密矩陣,然後將分解成 A' = U∑V T 。但是這種方法有兩個缺點:(1)補成稠密矩陣後需要耗費巨大的儲存空間,對這樣巨大的稠密矩陣進行儲存是不現實的;(2)SVD的計算復雜度很高,對這樣大的稠密矩陣中進行計算式不現實的。因此,隱語義模型就被發明了出來。

更詳細的SVD在推薦系統的應用可參考 奇異值分解SVD簡介及其在推薦系統中的簡單應用 。

隱語義模型(Latent Factor Model)最早在文本挖掘領域被提出,用於找到文本的隱含語義。相關的演算法有LSI,pLSA,LDA和Topic Model。本節將對隱語義模型在Top-N推薦中的應用進行詳細介紹,並通過實際的數據評測該模型。

隱語義模型的核心思想是通過隱含特徵聯系用戶興趣和物品。讓我們通過一個例子來理解一下這個模型。

現有兩個用戶,用戶A的興趣涉及偵探小說、科普圖書以及一些計算機技術書,而用戶B的興趣比較集中在數學和機器學習方面。那麼如何給A和B推薦圖書呢?

我們可以對書和物品的興趣進行分類。對於某個用戶,首先得到他的興趣分類,然後從分類中挑選他可能喜歡的物品。簡言之,這個基於興趣分類的方法大概需要解決3個問題:

對於第一個問題的簡單解決方案是找相關專業人員給物品分類。以圖書為例,每本書出版時,編輯都會給出一個分類。但是,即使有很系統的分類體系,編輯給出的分類仍然具有以下缺點:(1)編輯的意見不能代表各種用戶的意見;(2)編輯很難控制分類的細粒度;(3)編輯很難給一個物品多個分類;(4)編輯很難給一個物品多個分類;(5)編輯很難給出多個維度的分類;(6)編輯很難決定一個物品在某一個類別中的權重。

為了解決上述問題,研究員提出可以從數據出發,自動找到那些分類,然後進行個性化推薦。隱語義模型由於採用基於用戶行為統計的自動聚類,較好地解決了上面提出的5個問題。

LFM將矩陣分解成2個而不是3個:

推薦系統中用戶和物品的交互數據分為顯性反饋和隱性反饋數據。隱式模型中多了一個置信參數,具體涉及到ALS(交替最小二乘法,Alternating Least Squares)中對於隱式反饋模型的處理方式——有的文章稱為「加權的正則化矩陣分解」:

一個小細節:在隱性反饋數據集中,只有正樣本(正反饋)沒有負反饋(負樣本),因此如何給用戶生成負樣本來進行訓練是一個重要的問題。Rong Pan在其文章中對此進行了探討,對比了如下幾種方法:

用戶行為很容易用二分圖表示,因此很多圖演算法都可以應用到推薦系統中。基於圖的模型(graph-based model)是推薦系統中的重要內容。很多研究人員把基於領域的模型也稱為基於圖的模型,因為可以把基於領域的模型看作基於圖的模型的簡單形式。

在研究基於圖的模型之前,需要將用戶行為數據表示成圖的形式。本節的數據是由一系列用戶物品二元組 (u, i) 組成的,其中 u 表示用戶對物品 i 產生過行為。

令 G(V, E) 表示用戶物品二分圖,其中 V=V U UV I 由用戶頂點 V U 和物品節點 V I 組成。對於數據集中每一個二元組 (u, i) ,圖中都有一套對應的邊 e(v u , v i ),其中 v u ∈V U 是用戶對應的頂點,v i ∈V I 是物品i對應的頂點。如下圖是一個簡單的物品二分圖,其中圓形節點代表用戶,方形節點代表物品,用戶物品的直接連線代表用戶對物品產生過行為。比如下圖中的用戶A對物品a、b、d產生過行為。

度量圖中兩個頂點之間相關性的方法很多,但一般來說圖中頂點的相關性主要取決於下面3個因素:

而相關性高的一對頂點一般具有如下特徵:

舉個例子,如下圖,用戶A和物品c、e沒有邊直連,但A可通過一條長度為3的路徑到達c,而Ae之間有兩條長度為3的路徑。那麼A和e的相關性要高於頂點A和c,因而物品e在用戶A的推薦列表中應該排在物品c之前,因為Ae之間有兩條路徑。其中,(A,b,C,e)路徑經過的頂點的出度為(3,2,2,2),而 (A,d,D,e) 路徑經過了一個出度比較大的頂點D,所以 (A,d,D,e) 對頂點A與e之間相關性的貢獻要小於(A,b,C,e)。

基於上面3個主要因素,研究人員設計了很多計算圖中頂點相關性的方法,本節將介紹一種基於隨機遊走的PersonalRank演算法。

假設要給用戶u進行個性化推薦,可以從用戶u對應的節點 v u 開始在用戶物品二分圖上進行隨機遊走。遊走到任一節點時,首先按照概率α決定是繼續遊走還是停止這次遊走並從 v u 節點重新開始遊走。若決定繼續遊走,則從當前節點指向的節點中按照均勻分布隨機選擇一個節點作為遊走下次經過的節點。這樣,經過很多次隨機遊走後,每個物品被訪問到的概率會收斂到一個數。最終的推薦列表中物品的權重就是物品節點的訪問概率。

上述演算法可以表示成下面的公式:

雖然通過隨機遊走可以很好地在理論上解釋PersonalRank演算法,但是該演算法在時間復雜度上有明顯的缺點。因為在為每個用戶進行推薦時,都需要在整個用戶物品二分圖上進行迭代,知道所有頂點的PR值都收斂。這一過程的時間復雜度非常高,不僅無法在線進行實時推薦,離線計算也是非常耗時的。

有兩種方法可以解決上面PersonalRank時間復雜度高的問題:
(1)減少迭代次數,在收斂之前停止迭代。但是這樣會影響最終的精度。

(2)從矩陣論出發,重新涉及演算法。另M為用戶物品二分圖的轉移概率矩陣,即:

網路社交是當今社會非常重要甚至可以說是必不可少的社交方式,用戶在互聯網上的時間有相當大的一部分都用在了社交網路上。

當前國外最著名的社交網站是Facebook和Twitter,國內的代表則是微信/QQ和微博。這些社交網站可以分為兩類:

需要指出的是,任何一個社交網站都不是單純的社交圖譜或興趣圖譜。如QQ上有些興趣愛好群可以認識不同的陌生人,而微博中的好友也可以是現實中認識的。

社交網路定義了用戶之間的聯系,因此可以用圖定義社交網路。我們用圖 G(V,E,w) 定義一個社交網路,其中V是頂點集合,每個頂點代表一個用戶,E是邊集合,如果用戶va和vb有社交網路關系,那麼就有一條邊 e(v a , v b ) 連接這兩個用戶,而 w(v a , v b )定義了邊的權重。一般來說,有三種不同的社交網路數據:

和一般購物網站中的用戶活躍度分布和物品流行度分布類似,社交網路中用戶的入度(in degree,表示有多少人關注)和出度(out degree,表示關注多少人)的分布也是滿足長尾分布的。即大部分人關注的人都很少,被關注很多的人也很少。

給定一個社交網路和一份用戶行為數據集。其中社交網路定義了用戶之間的好友關系,而用戶行為數據集定義了不同用戶的歷史行為和興趣數據。那麼最簡單的演算法就是給用戶推薦好友喜歡的物品集合。即用戶u對物品i的興趣 p ui 可以通過如下公式計算。

用戶u和用戶v的熟悉程度描述了用戶u和用戶在現實社會中的熟悉程度。一般來說,用戶更加相信自己熟悉的好友的推薦,因此我們需要考慮用戶之間的熟悉度。下面介紹3中衡量用戶熟悉程度的方法。

(1)對於用戶u和用戶v,可以使用共同好友比例來計算他們的相似度:

上式中 out(u) 可以理解為用戶u關注的用戶合集,因此 out(u) ∩ out(v) 定義了用戶u、v共同關注的用戶集合。

(2)使用被關注的用戶數量來計算用戶之間的相似度,只要將公式中的 out(u) 修改為 in(u):

in(u) 是指關注用戶u的集合。在無向社交網路中,in(u)和out(u)是相同的,而在微博這種有向社交網路中,這兩個集合的含義就不痛了。一般來說,本方法適合用來計算微博大V之間的相似度,因為大v往往被關注的人數比較多;而方法(1)適用於計算普通用戶之間的相似度,因為普通用戶往往關注行為比較豐富。

(3)除此之外,還可以定義第三種有向的相似度:這個相似度的含義是用戶u關注的用戶中,有多大比例也關注了用戶v:

這個相似度有一個缺點,就是在該相似度下所有人都和大v有很大的相似度,這是因為公式中的分母並沒有考慮 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,來降低大v與其他用戶的相似度:

上面介紹了3種計算用戶之間相似度(或稱熟悉度)的計算方法。除了熟悉程度,還需要考慮用戶之間的興趣相似度。我們和父母很熟悉,但很多時候我們和父母的興趣確不相似,因此也不會喜歡他們喜歡的物品。因此,在度量用戶相似度時,還需要考慮興趣相似度,而興趣相似度可以通過和UserCF類似的方法度量,即如果兩個用戶喜歡的物品集合重合度很高,兩個用戶的興趣相似度很高。

最後,我們可以通過加權的形式將兩種權重合並起來,便得到了各個好有用戶的權重了。

有了權重,我們便可以針對用戶u挑選k個最相似的用戶,把他們購買過的物品中,u未購買過的物品推薦給用戶u即可。打分公式如下:

其中 w' 是合並後的權重,score是用戶v對物品的打分。

node2vec的整體思路分為兩個步驟:第一個步驟是隨機遊走(random walk),即通過一定規則隨機抽取一些點的序列;第二個步驟是將點的序列輸入至word2vec模型從而得到每個點的embedding向量。

隨機遊走在前面基於圖的模型中已經介紹過,其主要分為兩步:(1)選擇起始節點;(2)選擇下一節點。起始節點選擇有兩種方法:按一定規則抽取一定量的節點或者以圖中所有節點作為起始節點。一般來說會選擇後一種方法以保證所有節點都會被選取到。

在選擇下一節點方法上,最簡單的是按邊的權重來選擇,但在實際應用中需要通過廣度優先還是深度優先的方法來控制遊走范圍。一般來說,深度優先發現能力更強,廣度優先更能使社區內(較相似)的節點出現在一個路徑里。

斯坦福大學Jure Leskovec教授給出了一種可以控制廣度優先或者深度優先的方法。

以上圖為例,假設第一步是從t隨機遊走到v,這時候我們要確定下一步的鄰接節點。本例中,作者定義了p和q兩個參數變數來調節遊走,首先計算其鄰居節點與上一節點t的距離d,根據下面的公式得到α:

一般從每個節點開始遊走5~10次,步長則根據點的數量N遊走根號N步。如此便可通過random walk生成點的序列樣本。

得到序列之後,便可以通過word2vec的方式訓練得到各個用戶的特徵向量,通過餘弦相似度便可以計算各個用戶的相似度了。有了相似度,便可以使用基於用戶的推薦演算法了。

推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣,因此大量的用戶行為數據就成為推薦系統的重要組成部分和先決條件。如何在沒有大量用戶數據的情況下設計個性化推薦系統並且讓用戶對推薦結果滿意從而願意使用推薦系統,就是冷啟動問題。

冷啟動問題主要分為三類:

針對用戶冷啟動,下面給出一些簡要的方案:
(1)有效利用賬戶信息。利用用戶注冊時提供的年齡、性別等數據做粗粒度的個性化;
(2)利用用戶的社交網路賬號登錄(需要用戶授權),導入用戶在社交網站上的好友信息,然後給用戶推薦其好友喜歡的物品;
(3)要求用戶在登錄時對一些物品進行反饋,手機用戶對這些物品的興趣信息,然後給用推薦那些和這些物品相似的物品;
(4)提供非個性化推薦。非個性化推薦的最簡單例子就是熱門排行榜,我們可以給用戶推薦熱門排行榜,然後等到用戶數據收集到一定的時候,在切換為個性化推薦。

對於物品冷啟動,可以利用新加入物品的內容信息,將它們推薦給喜歡過和他們相似的物品的用戶。

對於系統冷啟動,可以引入專家知識,通過一定高效的方式快速建立起物品的相關度表。

在上面介紹了一些推薦系統的基礎演算法知識,這些演算法大都是比較經典且現在還在使用的。但是需要注意的是,在實踐中,任何一種推薦演算法都不是單獨使用的,而是將多種推薦演算法結合起來,也就是混合推薦系統,但是在這里並不準備介紹,感興趣的可以查閱《推薦系統》或《推薦系統與深度學習》等書籍。此外,在推薦中非常重要的點擊率模型以及基於矩陣的一些排序演算法在這里並沒有提及,感興趣的也可自行學習。

雖然現在用的很多演算法都是基於深度學習的,但是這些經典演算法能夠讓我們對推薦系統的發展有一個比較好的理解,同時,更重要的一點——「推陳出新」,只有掌握了這些經典的演算法,才能提出或理解現在的一些更好地演算法。

Ⅵ 猜你喜歡是如何猜的——常見推薦演算法介紹

自從頭條系的產品今日頭條和抖音火了之後,個性化推薦就進入了大眾的視野,如果我們說搜索時人找信息的話,那麼推薦就是信息找人。搜索是通過用戶主動輸入索引信息告訴機器自己想要的東西,那麼推薦的這個索引是什麼才能讓信息找到人呢?

第一類索引是「你的歷史」,即基於你以前在平台上對某物品產生的行為(點贊,轉發,評論或者收藏),尋找與你產生過相似行為的用戶所喜歡的其他物品或者與你喜歡的物品相似的其他物品來為你推薦。這一基於用戶行為相似的演算法有:協同過濾演算法、基於內容的推薦演算法和基於標簽的推薦演算法。

基於用戶的協同過濾演算法是尋找與A用戶有相似行為的所有B用戶所喜歡的而A用戶還不知道的物品推薦給A用戶 。該演算法包括兩個步驟:

-根據用戶所喜歡的物品計算用戶間相似度,找到與目標用戶相似的用戶集合;

-找到該用戶集合所喜歡的而目標用戶所不知道的物品。

那麼,找出一批物品以後哪個先推薦哪個後推薦?用戶間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。即假設A用戶與B用戶的相似程度為0.9,與C用戶的相似程度為0.7,用戶B喜歡物品a和物品b的程度分別為1和2,用戶C喜歡物品a和物品b的程度分別為0.1和0.5,那麼先推薦物品b。多個用戶多個物品,只要擬定了用戶間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。

基於物品的協同過濾演算法是根據用戶行為而不是物品本身的相似度來判斷物品的相似度 ,即如果物品A和物品B被很多的用戶同時喜歡,那麼我們就認為物品A和物品B是相似的。該演算法也是包括兩個步驟:

-根據用戶行為計算物品間的相似度;

-根據物品的相似度和用戶的歷史行為給用戶生成推薦列表。

與UserCF相似的是,同樣會遇到推薦的先後順序問題,那麼ItemCF所遵循的原則是:物品間相似程度大的先推薦,用戶對物品的感興趣程度大要先推薦。假設用戶對物品a和物品b感興趣的程度分別為1和0.5,物品a與物品c和物品d的相似度分別為0.5和0.1,物品b與物品c和物品d的相似度分別為0.3和0.4,那麼先推薦物品d。用戶喜歡多個物品,並且多個物品與其他物品都有相似的情況下,只要擬定了用物品間的相似度和用戶對物品的感興趣程度,即可對物品進行打分並且進行綜合排序。

協同過濾演算法的核心都是通過用戶行為來計算相似度,User-CF是通過用戶行為來計算用戶間的相似度,Item-CF是通過用戶行為來計算物品間的相似度。

推薦演算法很重要的一個原理是為用戶推薦與用戶喜歡的物品相似的用戶又不知道的物品。物品的協同過濾演算法是通過用戶行為來衡量物品間的相似(喜歡物品A的用戶中,同時喜歡物品B的用戶比例越高,物品A與物品B的相似程度越高),而基於內容的推薦演算法衡量則是通過物品本身的內容相似度來衡量物品間的相似。

假如,你看了東野圭吾的《解憂雜貨店》,那麼下次系統會給你推薦東野圭吾的《白夜行》。假設你看了小李子的《泰坦尼克號》,系統再給你推薦小李子的《荒野獵人》。

該演算法與前兩種不同的是,將用戶和物品之間使用「標簽」進行聯系,讓用戶對喜歡的物品做記號(標簽),將同樣具有這些記號(標簽)的其他物品認為很大程度是相似的並推薦給用戶。其基本步驟如下:

統計用戶最常用的標簽

對於每個標簽,統計最常被打過這個標簽次數最多的物品

將具有這些標簽最熱門的物品推薦給該用戶

目前,國內APP中,豆瓣就是使用基於標簽的推薦演算法做個性化的推薦。

第二類索引是「你的朋友」,基於你的社交好友來進行推薦,即基於社交網路的推薦。例如,微信看一看中的功能「朋友在看」就是最簡單的基於社交網路的推薦,只要用戶點擊公眾號文章的「在看」,就會出現在其好友的「朋友在看」的列表中。

復雜一點的演算法會考慮用戶之間的熟悉程度和興趣的相似度來進行推薦。目前,在信息流推薦領域,基於社交網路進行推薦的最流行的演算法是Facebook的EdgeRank演算法,即為用戶推薦其好友最近產生過重要行為(評論點贊轉發收藏)的信息。

第三類索引是「你所處的環境」,基於你所處的時間、地點等上下文信息進行推薦。例如,我們看到很APP中的「最近最熱門」,就是基於時間上下文的非個性化推薦;以及,美團和餓了么這些基於位置提供服務的APP中,「附近商家」這一功能就是基於用戶位置進行推薦。高德地圖在為用戶推薦駕駛路線時,會考慮不同路線的擁堵程度、紅綠燈數量等計算路線用和路程距離再進行綜合排序推薦。

很多時候,基於時間上下文的推薦會協同過濾這類個性化推薦演算法結合使用。例如,在使用協同過濾推薦策略的時候,會將時間作為其中一個因素考慮進入推薦策略中,最近的信息先推薦。

以上就是常見的推薦演算法。作為產品人,我們不需要知道如何實現,但是我們必須知道這些推薦演算法的原理,知道在什麼場景下如何去做推薦才能提升推薦的效率,這才是產品經理的價值所在。

參考資料:《推薦演算法實戰》項亮

Ⅶ 推薦演算法綜述

推薦系統的目的是通過推薦計算幫助用戶從海量的數據對象中選擇出用戶最有可能感興趣的對象。涉及三個基本內容:目標用戶、待推薦項目以及推薦演算法,基本流程為:描述為用戶模型構建、項目模型建立以及推薦演算法處理三個基本流程;

為了能夠為用戶提供准確的推薦服務,推薦系統需要為用戶構建用戶模型,該模型能夠反映用戶動態變化的多層次興趣偏好,有助於推薦系統更好的理解用戶的特徵和需求。構建用戶模型通常需要經歷三個流程:用戶數據收集,用戶模型表示以及用戶模型更新。

(1)用戶數據收集:用戶數據是用戶模型構建的基礎,用戶數據收集的方式一般有顯示方式獲取和隱式方式獲取兩種。
顯示方式獲取的數據是用戶特徵屬性和興趣偏好的直接反映,所獲得的信息數據是較為客觀全面的,比如用戶在注冊時包含的性別、年齡等信息可以直接表示出用戶的基本人口學信息和興趣信息,用戶對項目的評分可以反映出用戶的偏好。但顯示獲取的方式最大的缺陷是其實時性較差,並且具有很強的侵襲性。
隱式方式獲取用戶數據是在不幹擾用戶的前提下,採集用戶的操作行為數據,並從中挖掘出用戶的興趣偏好。用戶的很多操作行為都能反映出用戶的喜好,比如用戶瀏覽網頁的速度、用戶查詢的關鍵字等,推薦系統在不影響用戶使用系統的情況下,通過行為日誌挖掘出用戶的偏好。隱式獲取方式由於具有較好的實時性和靈活性和較弱的侵襲性,己經成為推薦系統中主要的用戶數據採集方式。

(2)用戶模型表示:用戶模型是從用戶數據中歸納出的推薦系統所理解的用戶興趣偏好的結構化形式。
a 基於內容關鍵詞表示;
b 基於評分矩陣表示;
(3)用戶模型更新:推薦系統面臨的問題之一是興趣漂移,興趣漂移的根本原因在於用戶的興趣會隨時間發生改變。為了使用戶模型夠准確的代表用戶的興趣,推薦系統需要根據最新的用戶數據對用戶模型進行更新。

目前項目模型主要通過基於內容和基於分類這兩類方式來建立。基於內容的方式是以項目本身內容為基礎,向量空間模型表示是目前御用最為廣泛的基於內容的方式。

基於分類的方式是根據項目的內容或者屬性,將項目劃分到一個或者幾個類別中,利用類別信息來表示項目,這種方法可以很方便地將項目推薦給對某一類別感興趣的用戶。常見的分類演算法有樸素貝葉斯演算法和KNN分類演算法等。

推薦系統實現的核心是其使用的推薦演算法。針對不同的使用環境及其系統的數據特徵,選取不同的推薦演算法,可以在本質上提高推薦系統的推薦效果。根據不同的分類標准,推薦演算法出現了有很多不同的分類方法,本文採用了比較普遍的分類方法。

推薦系統通常被分為基於內容的推薦演算法、協同過濾推薦演算法以及混合模型推薦演算法三大類。

基於內容的推薦演算法,其本質是對物品或用戶的內容進行分析建立屬性特徵。系統根據其屬性特徵,為用戶推薦與其感興趣的屬性特徵相似的信息。演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶。

CBF(Content-based Filter Recommendations)演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶,比如用戶喜歡Java開發的書籍,則基於內容過濾演算法將用戶尚未看過的其他Java開發方面的書籍推薦給用戶。因此,該推薦演算法的關鍵部分是計算用戶模型和項目模型之間的內容相似度,相似度的計算通常採用餘弦相似性度量。

基於內容的推薦過程一般分為以下三個模塊:
(1)特徵提取模塊:由於大多數物品信息是非結構化的,需要為每個物品(如產品、網頁、新聞、文檔等)抽取出一些特徵屬性,用某一恰當的格式表示,以便下一階段的處理。如將新聞信息表示成關鍵詞向量,此種表示形式將作為下一模塊(屬性特徵學習模塊)的輸入。

(2)特徵學習模塊:通過用戶的歷史行為數據特徵,機器學習出用戶的興趣特徵模型。本模塊負責收集代表用戶喜好的數據信息,並泛化這些數據,用於構建用戶特徵模型。通常使用機器學習的泛化策略,來將用戶喜好表示為興趣模型。

(3)推薦模塊:該模塊利用上一階段得到的用戶特徵模型,通過對比用戶興趣模型與帶推薦物品的特徵相似度,為用戶推薦與其興趣相似度較高的物品,從而達到個性化推薦的目的。該模塊一般採用計算用戶興趣向量與待推薦物品特徵向量的相似度來進行排序,將相似度較高的物品推薦給相應用戶。計算相似度有多種方法,如皮爾遜相關系數法、夾角餘弦法、Jaccard相關系數法等。

協同過濾演算法(Collaborative Filtering)是於內容無關的,即不需要額外獲取分析用戶或物品的內容屬性特徵。是基於用戶歷史行為數據進行推薦的演算法。其通過分析用戶與物品間的聯系來尋找新的用戶與物品間的相關性。

該演算法演算法通常有兩個過程,一個過程是預測,另一個過程是推薦。主流的協同過濾演算法包括三種:基於用戶的協同過濾(User-Based Collaborative Filtering,UBCF)、基於項目的協同過濾(Item-Based Collaborative Filtering, IBCF)和基於模型的協同過濾(Model-Based Collaborative Filtering, MBCF)

(1)基於用戶的協同過濾演算法
基於用戶的協同過濾推薦演算法,先通過用戶歷史行為數據找到和用戶u相似的用戶,將這些用戶感興趣的且u沒有點擊過的物品推薦給用戶。
演算法主要包括以下兩個步驟:
(1)找到與目標用戶喜好相似的鄰居用戶集合。
(2)在鄰居用戶集合中,為用戶推薦其感興趣的物品。

UBCF的基本思想是將與當前用戶有相同偏好的其他用戶所喜歡的項目推薦給當前用戶。一個最典型的例子就是電影推薦,當我們不知道哪一部電影是我們比較喜歡的時候,通常會詢問身邊的朋友是否有好的電影推薦,詢問的時候我們習慣於尋找和我們品味相同或相似的朋友。

(2)基於物品的協同過濾演算法
基於物品的協同過濾演算法(Item-based Collaborative Filtering)其主要思想是,為用戶推薦那些與他們之前喜歡或點擊過的物品相似的物品。不過基於物品的協同過濾演算法並不是利用物品的內容屬性特徵來計算物品之間的相似度的。該類演算法是利用用戶的歷史行為數據計算待推薦物品之間的相似度。在該類演算法中,如果喜歡物品A的用戶大都也喜歡物品B,那麼就可以認為物品A和物品B之間的相似度很高。
演算法分為以下兩個步驟:
(1)根據用戶歷史行為數據,計算物品間的相似度。
(2)利用用戶行為和物品間的相似度為用戶生成推薦列表。

IBCF演算法是亞馬遜在2003年發表的論文中首次提出,該演算法的基本思想是根據所有用戶的歷史偏好數據計算項目之間的相似性,然後把和用戶喜歡的項目相類似的並且用戶還未選擇的其他項目推薦給用戶,例如,假設用戶喜歡項目a,則用戶喜歡與項目a高度相似且還未被用戶選擇的項目b的可能性非常大,因此將項目b推薦給用戶。

UBCF和IBCF都屬於基於內存的協同過濾演算法,這類演算法由於充分發揮了用戶的評分數據,形成全局推薦,因此具有較高的推薦質量。但隨著用戶和項目的規模增長,這類演算法的計算時間大幅上升,使得系統的性能下降。針對該問題,研究人員提出將數據挖掘中的模型和CF演算法結合,提出了基於模型的協同過濾演算法(MBCF) 。

MBCF演算法利用用戶歷史評分數據建立模型,模型建立的演算法通常有奇異值分解、聚類演算法、貝葉斯網路、關聯規則挖掘等,且通常是離線完成。由於MBCF通常會對原始評分值做近似計算,通過犧牲一定的准確性來換取系統性能,因此MBCF的推薦質量略差於UBCF和IBCF。

由於基於內容的推薦演算法和協同過濾推薦演算法都有其各自的局限性,混合推薦演算法應運而生。混合推薦演算法根據不同的應用場景,有多
種不同的結合方式,如加權、分層和分區等。

目前使用的混合推薦演算法的思想主要可以分成以下幾類:
(1)多個推薦演算法獨立運行,獲取的多個推薦結果以一定的策略進行混合,例如為每一個推薦結果都賦予一個權值的加權型混合推薦演算法和將各個推薦結果取TOP-N的交叉混合推薦演算法。

(2)將前一個推薦方法產出的中間結果或者最終結果輸出給後一個推薦方法,層層遞進,推薦結果在此過程中會被逐步優選,最終得到一個精確度比較高的結果。

(3)使用多種推薦演算法,將每種推薦演算法計算過程中產生的相似度值通過權重相加,調整每個推薦演算法相似度值的權重,以該混合相似度值為基礎,選擇出鄰域集合,並結合鄰域集合中的評估信息,得出最優的推薦結果。

BP (Back Propagation)神經網路是目前應用最廣泛的神經網路模型之一,是一種按誤差逆傳播演算法訓練的多層前饋網路。

BP神經網路模型包括輸入層、隱藏層和輸出層,每一層由一個或多個神經元組成,其結構圖如圖2-3所示。BP神經網路擁有很強的非線性映射能力和自學習、自適應能力,網路本身結構的可變性,也使其十分靈活,一個三層的BP神經網路能夠實現對任意非線性函數進行逼近。

BP神經網路的訓練過程通常分為3個過程,依次分別為數據初始化過程、正向推演計算過程以及反向權重調整過程。數據初始化是BP神經網路能夠進行有效訓練的前提,該過程通常包括輸入數據進行歸一化處理和初始權重的設置;正向推演計算是數據沿著網路方向進行推演計算;反向權重調整則是將期望輸出和網路的實際輸出進行對比,從輸出層開始,向著輸入層的方向逐層計算各層中各神經元的校正差值,調整神經元的權重。正向推演計算和反向權重調整為對單個訓練樣本一次完整的網路訓練過程,經過不斷的訓練調整,網路的實際輸出越來越趨近於期望輸出,當網路輸出到達預期目標,整個訓練過程結束。

TF-IDF(Term Frequency-Inverse Document Frequency,詞頻一逆文檔)是文本處理中常用的加權技術,廣泛應用於信息檢索、搜索引擎等領域。
TF-IDF的主要思想是:如果一個關鍵詞在文檔中出現的頻率很高,而在其他文檔中出現次數較少,則該關鍵詞被認為具有較強的代表性,即該關鍵詞通過TF-IDF計算後有較高的權重。

TextRank演算法,是一種用於文本關鍵詞排序的演算法,頁排序演算法PageRank。
PageRank基本思想是將每個網頁看成一個節點,網頁中的鏈接指向看成一條有向邊,一個網頁節點的重要程度取決於鏈接指向該網頁節點的其他節點的數量和重要權值,該過程描述如下:讓每一個網頁對其所包含的鏈接指向的網頁進行迭代投票,每次迭代投票過程中票的權重取決於網頁當前擁有的票數,當投票結果收斂或者達到指定的迭代次數時,每個網頁所獲得票數即為網頁重要程度權值。

TextRank演算法相比於TF-IDF最大的優點是TextRank是一種無監督的學習,因此不會受限於文本的主題,並且無需大規模的訓練集,可以針對單一文本進行快速的關鍵詞的權重計算。

Ⅷ 信息流的那點事:3 推薦演算法是如何實現的

講完信息流流行的原因( 信息流的那點事:2 為什麼信息流如此流行 ),這一篇,我們來從產品的視角,來看看推薦演算法在技術上是如何實現的。

根據需要的技術和運營成本,可以將主流的推薦演算法分為三類:基於內容元數據的推薦、基於用戶畫像的推薦、基於協同過濾演算法的推薦。

基於元數據的推薦是比較基礎的推薦演算法,基本原理是給內容打標簽,具體元數據的選取根據的內容有所不同,比較通用的角度有內容的關鍵詞、類型、作者、來源等,打開一款頭條類app,選擇屏蔽一條內容,就可以看到一些該內容的元數據。

有了內容的元數據,就可以根據內容間的關聯,可以進行相關內容的推薦,喜歡看奇葩說的用戶,可能也會喜歡看同是米未傳媒出品的飯局的誘惑。根據內容的元數據,也可以記錄並逐漸明確用戶的內容偏好,進行數據積累,便於結合用戶的喜好進行對應的精準推薦,這也就是下面要說的基於用戶畫像的推薦的內容。

用戶畫像,類比一下就是給用戶打標簽,主要由三部分組成:用戶的基礎數據(年齡、性別等)、應用使用數據(應用使用頻率、時長等)和內容偏好數據(喜好的內容分類、種類等)。

對於基礎數據,不同年齡的用戶的內容偏好有很大差異,年輕人可能更喜歡新歌熱歌,而中年人可能更愛聽懷舊一些的歌曲;根據應用使用數據,可以進行用戶分層,活躍用戶可以多推薦內容促進使用,快要流失用戶可以推送一些打開率較高的內容來挽回,運營活動也可以更有針對性;基於內容偏好數據,可以記錄並逐漸明確用戶的內容偏好,從而進行更精準的推薦,從愛看娛樂新聞,到愛看國內明星,再到愛看某個小鮮肉,隨著內容偏好數據的逐步積累,頭條類產品的推薦也就越精確。

協同過濾演算法,簡單來說,就是尋找相近的用戶或內容來進行推薦,主要有基於用戶的協同過濾推薦和基於項目的協同過濾推薦兩種。

(1)基於用戶的協同過濾推薦

基於用戶的協同過濾推薦演算法,就是通過演算法分析出與你內容偏好相近的用戶,將他喜歡的內容推薦給你,這種推薦給你志同道合的人愛看的內容的思路,更相近於生活中的朋友作為同道中人的推薦。舉例來說,如果你喜歡ABC,而其他用戶在和你一樣喜歡ABC的同時,還都喜歡D,那麼就會把D推薦給你。

(2).基於內容的協同過濾推薦

基於內容的協同過濾推薦演算法,就是通過演算法分析出內容和內容之間的關聯度,根據你喜歡的內容推薦最相關的內容,常見的看了這個內容的用戶85%也喜歡xxx,就是這種思路。舉例來說,如果你喜歡A,而喜歡A的用戶都喜歡B,那麼就會把B推薦給你。

相比於純粹的基於內容元數據的推薦,基於內容的協同過濾推薦更能發現一些內容間深層次的聯系,比如羅輯思維經常推薦各種內容,僅僅根據內容元數據來推薦,一集羅輯思維最相關的應該是另外一集,並不能推薦內容元數據相關性不太大的節目里推薦的內容;但由於可能很多用戶看完後都會搜索查看節目里推薦的內容,基於內容的協同過濾推薦就會發現兩者的相關性,進行推薦。

介紹推薦演算法的思路時,我們一直談到一個詞「內容偏好」,這也就是實現推薦演算法時一個核心的問題——需要通過怎樣的數據,才能判定用戶的內容偏好?主流的思路有一下三種:

讓用戶手動選擇,顯然是最簡單的思路,然而由於選擇的空間必然有限,只能讓用戶從幾個大類中間挑選,無法涵蓋全部內容的同時,粒度過大推薦也就很難精準。而且剛打開應用就讓用戶選擇,或者是讓用戶使用一段時間後在去補充選擇,這樣的操作都太重可能造成用戶流失。

既然手動選擇很難實現,我們就需要從用戶的使用數據中挖掘,主流的思路就是根據用戶一些主動操作來判斷,點擊閱讀了就說明喜歡,點了贊或者回復分享就是特別喜歡,如果跳過了內容就減少推薦,點擊了不感興趣,就不再推薦。

根據用戶使用的操作來判斷內容偏好,在不斷地使用中積累與細化數據,對內容偏好的判斷也就越來越准確,這就是頭條系應用的主要策略,這樣的策略對於下沉市場的不願做出主動選擇的沉默用戶,是一個非常適合的策略,但這樣只看點擊與操作,不關注內容實際質量的策略也會造成標題黨、內容低俗等問題,在後文會進一步介紹。

既然選擇不能完全代表用戶的內容偏好,如何使判斷更加精準呢?就要從一些更加隱性的數據入手了,比如對於文章,除了點擊,閱讀時間,閱讀完成度,是否查看文章的相關推薦內容,都是可以考慮的角度,相比純粹的點擊判斷,可以一定程度上解決標題黨的問題。再比如看視頻,如果快進次數過多,雖然看完了,可能也不是特別感興趣,而值得反復回看的內容,命中內容偏好的幾率就相對較高。

介紹完了推薦演算法的原理與數據來源,讓我們來試著還原一下一條內容的完整分發流程。

首先,是內容的初始化與冷啟動。可以通過演算法對內容進行分析提取或者人工處理,提取內容的來源、分類、關鍵詞等元數據,再根據用戶畫像計算內容興趣匹配度,分發給有對應內容偏好的用戶,,也可以通過內容原匹配度,向關系鏈分發,完成內容的冷啟動。

然後,可以根據用戶閱讀時間,閱讀完成度,互動數等數據,對該內容的質量進行分析,相應的增加或者減少推薦,實現內容動態分發調節。

最後,就是協同過濾演算法發揮作用的時間,對於優質內容,可以通過基於用戶的協同過濾推薦,推薦給與該內容受眾有類似愛好的用戶,也可以基於項目的協同過濾推薦,推薦給愛觀看同類內容的用戶,讓優質內容的傳播不在局限於關系鏈。

在真正的推薦演算法實現過程中,除了基礎的內容原匹配度,內容匹配度和內容質量,還有很多值得考慮的問題,比如新聞通知等時效性內容就要短時間加權,超時則不推薦;對於用戶的內容偏好也不能永遠維持,隨著時間用戶可能會喜歡新的內容,如果一定時間內用戶對以前喜歡的內容不感興趣,就要減少該種類推薦;還有為了不陷入越喜歡越推薦,最後全部是一種內容,讓用戶厭煩的境地,對於用戶的偏好也要設定一個上限;為了保持新鮮度,需要幫助用戶發現他可能喜歡的新內容.....

最後,通過數據可以了解我們如何閱讀這篇文章,但任何數據都無法准確描述我們閱讀後的感受與收獲;再高級的演算法也只是演算法,它雖然可能比我們更了解我們實際的的內容偏好,但無法了解到我們對於內容的追求。

這可能也就是頭條系產品雖然收獲了巨大成功,但也收到了標題黨、低俗化、迴音室效應等指責的原因,下一篇,讓我們來聊聊,信息流產品的面臨的問題與可能的解決方法。

Ⅸ 如何做好「推薦演算法」有哪些常見的錯誤需要避免

在這里share一下。
1、推薦演算法的構成
一套標準的推薦演算法,需要四個組成部分
第一:數據源,行為基礎數據的篩選;通常,推薦演算法來源於用戶行為的採集,簡單說就是行為數據越豐富,樣本覆蓋率越全面,結果越准確;如果采樣有偏差,那麼結果就會有偏差。
舉例1:游戲推薦演算法,我們之前限於采樣技術水平和處理能力,用的是登陸用戶玩過的游戲歷史,那麼推薦結果就會偏重於需要登陸的游戲。而隨著技術提升用全部用戶玩過的游戲歷史,就更全面了。
舉例2:在搜索引擎中,對關鍵詞做推薦,有兩種方案,一種是基於廣告主的競價記錄;另一種是基於網民的搜索行為;前一種專業性更強,噪音小;後一種覆蓋面廣,噪音大,各有利弊,根據業務訴求選擇。
推薦演算法,通常來源於用戶的行為記錄,比如關鍵詞推薦用用戶搜索歷史,電商推薦用用戶購物歷史,游戲推薦用玩家玩游戲的歷史,然後基於演算法給出相關度,再排序展示 ;但這不絕對,也有並非基於用戶行為記錄的推薦原理,比如基於用戶身份特徵或其他地區、網路環境等特徵,限於篇幅和常見的業務訴求,這里就不展開說明了。
行為基礎數據必要時要做一些去除噪音的工作,比如你通過日誌分析玩家游戲歷史,或用戶購物歷史,至少知道把各搜索引擎和工具的抓取痕跡過濾出去,否則結果是很難看的。
演算法很多種,網上可以搜到很多,就算搜不到,或者搜到了看不懂,自己編也不難的(我就編過,效果自以為還不錯,但是的確不如人家專業的演算法效果好,所以適合練手,不適合出去吹牛)
不同演算法差異還是蠻大的,需要理解一下業務訴求和目標特徵來選擇。這個我真心不是高手,我們同事講的演算法我都沒能理解,就不多說了。微博上的「張棟_機器學習"和"梁斌penny"都是演算法高手,大家可以多關心他們的微博。
第三:參數!
絕對不要認為用到了好的演算法就可以了!演算法往往會基於一些參數來調優,這些參數哪裡來?很不好意思的告訴你,大部分是拍腦袋出來的。但是你拍腦袋出來後,要知道去分析結果,去看哪裡對,哪裡錯,哪裡可以改,好的演算法可以自動調優,機器學習,不斷自動調整參數達到最優,但是通常可能需要你不斷手工去看,去看badcase,想想是什麼參數因素導致的,改一下是否變好?是否引入新的bad case?
第四:校驗!
校驗一種是人工做盲測,A演算法,B演算法的結果混淆,選案例集,看哪個效果好;或A參數、B參數混淆,同理測試。通過盲測選擇認為更合理的演算法、更適宜的參數.
以上是個人認為,做好推薦演算法的步驟
下面說一下常見問題
1、以為有了演算法就ok了,不對參數優化,不做後續的校驗和數據跟蹤,效果不好就說演算法有問題,這種基本屬於工作態度的問題了。
2、對樣本數據的篩選有問題,或缺乏必要的噪音篩查,導致結果噪音多。比如你有個推廣位天天擺著,導致用戶點擊多,然後導致後台行為數據里它和誰的關聯都高,然後不管用戶到哪裡都推薦這個玩意,這就是沒有足夠篩查。
3、熱度影響
我說一下最簡單的推薦演算法
同時選擇了A和B的人數作為A與B的關聯度。
這個實現最簡單,也最容易理解,但是很容易受熱度影響
我曾經注意過某個熱門圖書電商網站,推薦的關聯書籍一水的熱門書籍,就是這個問題。
這些是非常簡單但是又非常容易出現的,關聯誤區。
4、過於求全
現在也遇到一些朋友,一提到推薦演算法或者推薦系統,就說我這個要考慮,那個要考慮,不管是行為記錄,還是用戶特徵,以至於各種節日效應,等等等等,想通過一個推薦系統完全搞定,目標很大,所以動作就極慢,構思洋洋灑灑做了很多,實現起來無從下手,或者難以寸進;我覺得,還是量力而行,從最容易下手的地方開始,先做到比沒有強,然後根據不斷地數據校驗跟蹤,逐漸加入其他考慮因素,步步前進,而不要一上來就定一個宏偉的龐大的目標;此外要考慮實現成本和開發周期,對於大部分技術實力沒有網路,騰訊,淘寶那麼強的公司而言,先把簡單的東西搞好,已經足夠有效了,然後在運營數據的基礎上逐次推進,會越來越好;有些公司是被自己宏大的目標搞的焦頭爛額,最後說,哎,沒牛人搞不定啊。嗯,反正他們的目標,我顯著是搞不定的。就這些,希望有所幫助

Ⅹ 百度搜索引擎的演算法是怎樣的

衡量網頁質量的維度
網路搜索引擎在衡量網頁質量時,會從以下三個維度綜合考慮給出一個質量打分。下面會一一介紹這些影響網頁質量判斷的維度特徵:
• 內容質量
• 瀏覽體驗
• 可訪問性
一個訪問流暢,內容質量高且瀏覽體驗好的網頁具有較高的質量;反之,任何一個維度出現問題,都會影響網頁的整體質量。下面我們具體介紹下這三個維度。

衡量網頁質量的維度——內容質量

網頁主體內容是網頁的價值所在,是滿足用戶需求的前提基礎。網路搜索引擎評價網頁內容質量主要看其主體內容的好壞,以及主體內容是否可以讓用戶滿意。 不同類型網頁的主體內容不同,網路搜索引擎判斷不同網頁的內容價值時,需要關注的點也有區別,如:
• 首頁:導航鏈接和推薦內容是否清晰、有效。
• 文章頁:能否提供清晰完整的內容,圖文並茂更佳。
• 商品頁:是否提供了完整真實的商品信息和有效的購買入口。
• 問答頁:是否提供了有參考價值的答案。
• 下載頁:是否提供下載入口,是否有許可權限制,資源是否有效。
• 文檔頁:是否可供用戶閱讀,是否有許可權限制。
• 搜索結果頁:搜索出來的結果是否與標題相關。

網路搜索引擎考量網頁內容質量的維度非常多,最為重要的是:成本;內容完整;信息真實有效以及安全。下面我們通過舉例來感受一下網路搜索引擎是如何對網頁的內容質量進行分類的,請站長對比自己站點的頁面,站在搜索引擎和用戶的角度為自己打分:
1、內容質量好:
網路搜索引擎認為內容質量好的網頁,花費了較多時間和精力編輯,傾注了編者的經驗和專業知識;內容清晰、完整且豐富;資源有效且優質;信息真實有效;安全無毒;不含任何作弊行為和意圖,對用戶有較強的正收益。對這部分網頁,網路搜索引擎會提高其展現在用戶面前的機率。例如:
• 專業醫療機構發布的內容豐富的醫療專題頁面;
• 資深工程師發布的完整解決某個技術問題的專業文章;
• 專業視頻網站上,播放清晰流暢的正版電影或影視全集頁面;
• 知名B2C網站上,一個完整有效的商品購買頁;
• 權威新聞站原創或經過編輯整理的熱點新聞報道;
• 經過網友認真編輯,內容豐富的詞條;
• 問答網站內,回答的內容可以完美解決提問者的問題。

實例參考:

示例

內容質量

說明

case 3.1.1-1



專業醫療網站發布的豐富醫療專題頁面

case 3.1.1-2



資深工程師發布的完整解決某個技術問題的專業文章

case 3.1.1-3



專業視頻網站上,播放清晰流暢的正版影視全集頁面

case 3.1.1-4



京東的一個完整有效的商品購買頁

case 3.1.1-5



權威新聞站原創的熱點新聞的報道

case 3.1.1-6



經過網友認真編輯,內容豐富的網路詞條

case3.1.1-7



網路知道上,完美解決用戶問題的問答頁

2、內容質量中:
內容質量中等的網頁往往能滿足用戶需求,但未花費較多時間和精力進行製作編輯,不能體現出編者的經驗和專業知識;內容完整但並不豐富;資源有效但質量欠佳;信息雖真實有效但屬採集得來;安全無毒;不含作弊行為和意圖。在互聯網中,中等質量網頁其實是一個比較大的數量集合,種類面貌也繁雜多樣,網路搜索引擎在評價這類網頁時往往還要考慮其它非常多因素。在這里,我們僅部分舉例來讓各位感受一下:
• 論壇類網站里一個普通的帖子;
• 一個普通的問答網頁;
• 沒有進行任何編輯,直接轉載其它網站的新聞;
• 無版權信息的普通電影播放頁
• 採集知名小說網站的盜版小說頁。

實例參考:

示例

內容質量

說明

case 3.1.2-1



網易直接轉載了中國新聞網的一篇新聞。

case 3.1.2-2



文庫上網友上傳的「國慶放假安排」新聞

case 3.1.2-3



採集起點小說網的盜版小說站

case 3.1.2-4



網路貼吧里一個普通的帖子

3、內容質量差:
網路搜索引擎認為主體內容信息量較少,或無有效信息、信息失效過期的都屬於內容質量差網頁,對用戶沒有什麼實質性的幫助,應該減少其展現的機會。同時,如果一個網站內該類網頁的佔比過大,也會影響網路搜索引擎對站點的評級,尤其是UGC網站、電商網站、黃頁網站要尤其重視對過期、失效網頁的管理。例如:
• 已下架的商品頁,或已過期的團購頁;
• 已過有效期的招聘、交易頁面;
• 資源已失效,如視頻已刪除、軟體下載後無法使用等。

4、沒有內容質量可言:
沒有內容質量可言的網頁指那些製作成本很低,粗製濫造;從別處採集來的內容未經最起碼的編輯整理即放置線上;掛木馬等病毒;含有作弊行為或意圖;完全不能滿足用戶需求,甚至含有欺騙內容的網頁。例如:
• 內容空短,有很少量的內容,卻不能支撐頁面的主要意圖;
• 問答頁有問無答,或回答完全不能解決問題;
• 站內搜索結果頁,但沒有給出相關信息

除上述網頁外,欺騙用戶和搜索引擎的網頁在無內容質量可言集合里占很高比例。網路搜索引擎對作弊網頁的定義是:不以滿足用戶需求為目的,通過不正當手段欺騙用戶和搜索引擎從而獲利的網頁。目前互聯網上這部分網頁還屬少數,但作弊網頁的價值是負向的,對用戶的傷害非常大,對這類網頁,搜索引擎持堅決打擊態度。

衡量網頁質量的維度——瀏覽體驗
不同質量的網頁帶給用戶的瀏覽體驗會有很大差距,一個優質的網頁給用戶的瀏覽體驗應該是正向的。用戶希望看到干凈、易閱讀的網頁,排版混亂、廣告過多會影響用戶對網頁主體內容的獲取。在網路搜索引擎網頁質量體系中,用戶對網頁主體內容的獲取成本與瀏覽體驗呈反比,即獲取成本越高,瀏覽體驗越低。面對內容質量相近的網頁,瀏覽體驗佳者更容易獲得更高的排位,而對於瀏覽體驗差的網頁,網路搜索引擎會視情況降低其展現的機率甚至拒絕收錄。
影響用戶瀏覽體驗好壞的因素很多,目前網路搜索引擎主要從內容排版、廣告影響兩方面對網頁進行考量:
內容排版:用戶進入網頁第一眼看到的就是內容排版,排版決定了用戶對網頁的第一印象,也決定了用戶對內容獲取的成本。
廣告影響:網路搜索引擎理解網站的生存發展需要資金支持,對網頁上放置正當廣告持支持態度。網頁應該以滿足用戶需求為主旨,最佳狀態即「主體內容與廣告一起滿足用戶需求,內容為主,廣告為輔」,而不應讓廣告成為網頁主體。

下面我們通過舉例來感受一下網路搜索引擎是如何對網頁的瀏覽體驗進行分類的,站長可以據此對比檢驗自己站點的瀏覽體驗如何:
1、瀏覽體驗好:
頁面布局合理,用戶獲取主體內容成本低,一般具有以下特徵:
• 排版合理,版式美觀,易於閱讀和瀏覽;
• 用戶需要的內容占據網頁最重要位置;
• 能夠通過頁面標簽或頁面布局十分清楚地區分出哪些是廣告;
• 廣告不搶佔主體內容位置,不阻礙用戶對主要內容的獲取;

實例參考:

示例

瀏覽體驗

說明

case 3.2.1-1



招聘、房產等網站首頁也有很多廣告,但都是招聘相關的,瀏覽體驗是ok的。

case 3.2.1-2



文章頁,頁面布局合理,無廣告,排版好,結構合理

case 3.2.1-3



游戲首頁,排版美觀,布局合理,無廣告,瀏覽體驗優

2、瀏覽體驗差:
頁面布局和廣告放置影響了用戶對主體內容的獲取,提高了用戶獲取信息的成本,令用戶反感。包括但不僅限於以下情況:
• 正文內容不換行或不分段,用戶閱讀困難;
• 字體和背景顏色相近,內容辨別困難;
• 頁面布局不合理,網頁首屏看不到任何有價值的主體內容;
• 廣告遮擋主體內容;或者在通用解析度下,首屏都是廣告,看不到主體內容;
• 彈窗廣告過多;
• 影響閱讀的浮動廣告過多
• 點擊鏈接時,出現預期之外的彈窗;
• 廣告與內容混淆,不易區分;

衡量網頁質量的維度——可訪問性
用戶希望快速地從搜索引擎獲取到需要的信息,網路搜索引擎盡可能為用戶提供能一次性直接獲取所有信息的網頁結果。網路搜索引擎認為不能直接獲取到主體內容的網頁對用戶是不友好的,會視情況調整其展現機率。

網路搜索引擎會從正常打開、許可權限制、有效性三方面判斷網頁的可訪問性,對於可以正常訪問的網頁,可以參與正常排序;對於有許可權限制的網頁,再通過其它維度對其進行觀察;對於失效網頁,會降權其展現機制甚至從資料庫中刪除。

1、可正常訪問的網頁
無許可權限制,能直接訪問所有主體內容的網頁。

2、有許可權限制的網頁
此類網頁分為兩種:打開許可權和資源獲取許可權
1)打開許可權:指打開網頁都需要登錄許可權,沒有許可權完全無法看到具體內容,普通用戶無法獲取或獲取成本很高,網路搜索引擎會降低其展現機率。不包括以登錄為主要功能的網頁。
2)資源獲取許可權:指獲取網頁主要內容,如文檔、軟體、視頻等,需要許可權或者需要安裝插件才能獲得完整內容。此時會分三種情況:
• 提供優質、正版內容的網站,由於內容建設成本很高,盡管查看全文或下載時需要許可權或安裝插件,但屬於用戶預期之內,網路搜索引擎也不認為許可權行為對用戶造成傷害,給予與正常可訪問頁面相同的對待。
• 對於一些非優質、非正版的資源,來自於用戶轉載甚至機器採集,本身成本較低,內容也不獨特,用戶獲取資源還有許可權限制——需要用戶注冊登錄或者付費查看,網路搜索引擎會根據具體情況決定是否調整其展現。
• 還有一些視頻、下載資源頁,也許自身資源質量並不差,但需要安裝非常冷門的插件才能正常訪問,比如要求安裝「xx大片播放器」,網路搜索引擎會懷疑其有惡意傾向。

實例參考:

示例

可訪問性

說明

case 3.2-1



CNKI上的一篇論文,收費才能下載,但有版權,瀏覽體驗好

case 3.2-2



優酷上一部新電影,需要付費才能觀看,瀏覽體驗好。

case 3.2-3



內容是來,但是需要登錄才能看更多

case 3.2-4



入黨申請書,本身就是轉載的,網上到處都是,但這個頁面仍然要求收費才能下載。

3、失效網頁
往往指死鏈和主體資源失效的網頁。網路搜索引擎認為這部分網頁無法提供有價值信息,如果站點中此類網頁過多,也會影響網路搜索引擎對其的收錄和評級。建議站長對此類網頁進行相應設置,並及時登錄網路站長平台,使用死鏈提交工具告知網路搜索引擎。
失效網頁包括但不僅限於:
• 404、403、503等網頁;
• 程序代碼報錯網頁;
• 打開後提示內容被刪除,或因內容已不存在跳轉到首頁的網頁;
• 被刪除內容的論壇帖子,被刪除的視頻頁面(多出現在UGC站點)

具體請參閱《網路搜索引擎網頁質量白皮書》,望採納!

熱點內容
c語言x輸出 發布:2025-09-14 03:38:16 瀏覽:691
ae漢化腳本 發布:2025-09-14 03:37:41 瀏覽:431
win8sqlserver2005 發布:2025-09-14 03:26:55 瀏覽:238
智能電視存儲其他文件 發布:2025-09-14 03:13:35 瀏覽:280
ftp限制上網 發布:2025-09-14 03:07:18 瀏覽:124
原子壓縮 發布:2025-09-14 03:07:18 瀏覽:450
vs2022編譯按鈕在哪 發布:2025-09-14 02:48:01 瀏覽:815
逍遙模擬器緩存進程怎麼查 發布:2025-09-14 02:36:27 瀏覽:367
雲伺服器聲音 發布:2025-09-14 02:24:22 瀏覽:277
蘇州貴賓廳的wifi密碼是多少 發布:2025-09-14 02:06:04 瀏覽:277