當前位置:首頁 » 操作系統 » 信號量linux

信號量linux

發布時間: 2023-05-06 02:40:47

A. linux信號量

信號量是包含一個非負整數型的變數,並且帶有兩個原子操作wait和signal。Wait還可以被稱為down、P或lock,signal還可以被稱為up、V、unlock或post。在UNIX的API中(POSIX標准)用的是wait和post。

對於wait操作,如果信號量的非負整形變數S大於0,wait就將其減1,如果S等於0,wait就將調用線程阻塞;對於post操作,如果有線程在信號量上阻塞(此時S等於0),post就會解除對某個等待線程的阻塞,使其從wait中返回,如果沒有線程阻塞在信號量上,post就將S加1.

由此可見,S可以被理解為一種資源的數量,信號量即是通過控制這種資源的分配來實現互斥和同步的。如果把S設為1,那麼信號量即可使多線程並發運行。另外,信號量不僅允許使用者申請和釋放資源,而且還允許使用者創造資源,這就賦予了信號量實現同步的功能。可見信號量的功能要比互斥量豐富許多。

POSIX信號量是一個sem_t類型的變數,但POSIX有兩種信號量的實現機制: 無名信號量 命名信號量 。無名信號量只可以在共享內存的情況下,比如實現進程中各個線程之間的互斥和同步,因此無名信號量也被稱作基於內存的信號量;命名信號量通常用於不共享內存的情況下,比如進程間通信。

同時,在創建信號量時,根據信號量取值的不同,POSIX信號量還可以分為:

下面是POSIX信號量函數介面:

信號量的函數都以sem_開頭,線程中使用的基本信號函數有4個,他們都聲明在頭文件semaphore.h中,該頭文件定義了用於信號量操作的sem_t類型:

【sem_init函數】:

該函數用於創建信號量,原型如下:

該函數初始化由sem指向的信號對象,設置它的共享選項,並給它一個初始的整數值。pshared控制信號量的類型,如果其值為0,就表示信號量是當前進程的局部信號量,否則信號量就可以在多個進程間共享,value為sem的初始值。

該函數調用成功返回0,失敗返回-1。

【sem_destroy函數】:

該函數用於對用完的信號量進行清理,其原型如下:

成功返回0,失敗返回-1。

【sem_wait函數】:

該函數用於以原子操作的方式將信號量的值減1。原子操作就是,如果兩個線程企圖同時給一個信號量加1或減1,它們之間不會互相干擾。其原型如下:

sem指向的對象是sem_init調用初始化的信號量。調用成功返回0,失敗返回-1。

sem_trywait()則是sem_wait()的非阻塞版本,當條件不滿足時(信號量為0時),該函數直接返回EAGAIN錯誤而不會阻塞等待。

sem_timedwait()功能與sem_wait()類似,只是在指定的abs_timeout時間內等待,超過時間則直接返回ETIMEDOUT錯誤。

【sem_post函數】:

該函數用於以原子操作的方式將信號量的值加1,其原型如下:

與sem_wait一樣,sem指向的對象是由sem_init調用初始化的信號量。調用成功時返回0,失敗返回-1。

【sem_getvalue函數】:

該函數返回當前信號量的值,通過restrict輸出參數返回。如果當前信號量已經上鎖(即同步對象不可用),那麼返回值為0,或為負數,其絕對值就是等待該信號量解鎖的線程數。

【實例1】:

【實例2】:

之所以稱為命名信號量,是因為它有一個名字、一個用戶ID、一個組ID和許可權。這些是提供給不共享內存的那些進程使用命名信號量的介面。命名信號量的名字是一個遵守路徑名構造規則的字元串。

【sem_open函數】:

該函數用於創建或打開一個命名信號量,其原型如下:

參數name是一個標識信號量的字元串。參數oflag用來確定是創建信號量還是連接已有的信號量。

oflag的參數可以為0,O_CREAT或O_EXCL:如果為0,表示打開一個已存在的信號量;如果為O_CREAT,表示如果信號量不存在就創建一個信號量,如果存在則打開被返回,此時mode和value都需要指定;如果為O_CREAT|O_EXCL,表示如果信號量存在則返回錯誤。

mode參數用於創建信號量時指定信號量的許可權位,和open函數一樣,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示創建信號量時,信號量的初始值。

【sem_close函數】:

該函數用於關閉命名信號量:

單個程序可以用sem_close函數關閉命名信號量,但是這樣做並不能將信號量從系統中刪除,因為命名信號量在單個程序執行之外是具有持久性的。當進程調用_exit、exit、exec或從main返回時,進程打開的命名信號量同樣會被關閉。

【sem_unlink函數】:

sem_unlink函數用於在所有進程關閉了命名信號量之後,將信號量從系統中刪除:

【信號量操作函數】:

與無名信號量一樣,操作信號量的函數如下:

命名信號量是隨內核持續的。當命名信號量創建後,即使當前沒有進程打開某個信號量,它的值依然保持,直到內核重新自舉或調用sem_unlink()刪除該信號量。

無名信號量的持續性要根據信號量在內存中的位置確定:

很多時候信號量、互斥量和條件變數都可以在某種應用中使用,那這三者的差異有哪些呢?下面列出了這三者之間的差異:

B. Linux信號 機制和Linux信號量機制的區別

首先,一句話總結它們之間的區別:

字面上相似,但是本質上存在巨大的差別!請看詳細解答...
Linux信號(signal) 機制

signal,又簡稱為信號(軟中斷信號)用來通知進程發生了非同步事件。

原理:

一個進程收到一個信號與處理器收到一個中斷請求可以說是一樣的。信號是進程間通信機制中唯一的非同步通信機制,一個進程不必通過任何操作來等待信號的到達,事實上,進程也不知道信號到底什麼時候到達。進程之間可以互相通過系統調用kill發送軟中斷信號。內核也可以因為內部事件而給進程發送信號,通知進程發生了某個事件。信號機制除了基本通知功能外,還可以傳遞附加信息。

分類:
從兩個不同的分類角度對信號進行:
可靠性方面:可靠信號與不可靠信號;
與時間的關繫上:實時信號與非實時信號。

部分定義轉自:http://www.cnblogs.com/hoys/archive/2012/08/19/2646377.html

Linux信號量(semaphore)機制
Linux內核的信號量用來操作系統進程間同步訪問共享資源。

原理:信號量在創建時需要設置一個初始值,表示同時可以有幾個任務可以訪問該信號量保護的共享資源,初始值為1就變成互斥鎖(Mutex),即同時只能有一個任務可以訪問信號量保護的共享資源。
一個任務要想訪問共享資源,首先必須得到信號量,獲取信號量的操作將把信號量的值減1,若當前信號量的值為負數,表明無法獲得信號量,該任務必須掛起在該信號量的等待隊列等待該信號量可用;若當前信號量的值為非負數,表示可以獲得信號量,因而可以立刻訪問被該信號量保護的共享資源。
當任務訪問完被信號量保護的共享資源後,必須釋放信號量,釋放信號量通過把信號量的值加1實現,如果信號量的值為非正數,表明有任務等待當前信號量,因此它也喚醒所有等待該信號量的任務。

常用的信號量的API:

DECLARE_MUTEX(name)

該宏聲明一個信號量name並初始化它的值為0,即聲明一個互斥鎖。
DECLARE_MUTEX_LOCKED(name)

該宏聲明一個互斥鎖name,但把它的初始值設置為0,即鎖在創建時就處在已鎖狀態。因此對於這種鎖,一般是先釋放後獲得。
void sema_init (struct semaphore *sem, int val);

該函用於數初始化設置信號量的初值,它設置信號量sem的值為val。
void init_MUTEX (struct semaphore *sem);

該函數用於初始化一個互斥鎖,即它把信號量sem的值設置為1。
void init_MUTEX_LOCKED (struct semaphore *sem);

該函數也用於初始化一個互斥鎖,但它把信號量sem的值設置為0,即一開始就處在已鎖狀態。
void down(struct semaphore * sem);

該函數用於獲得信號量sem,它會導致睡眠,因此不能在中斷上下文(包括IRQ上下文和softirq上下文)使用該函數。該函數將把sem的值減1,如果信號量sem的值非負,就直接返回,否則調用者將被掛起,直到別的任務釋放該信號量才能繼續運行。
int down_interruptible(struct semaphore * sem);

該函數功能與down類似,不同之處為,down不會被信號(signal)打斷,但down_interruptible能被信號打斷,因此該函數有返回值來區分是正常返回還是被信號中斷,如果返回0,表示獲得信號量正常返回,如果被信號打斷,返回-EINTR。
int down_trylock(struct semaphore * sem);

該函數試著獲得信號量sem,如果能夠立刻獲得,它就獲得該信號量並返回0,否則,表示不能獲得信號量sem,返回值為非0值。因此,它不會導致調用者睡眠,可以在中斷上下文使用。
void up(struct semaphore * sem);

該函數釋放信號量sem,即把sem的值加1,如果sem的值為非正數,表明有任務等待該信號量,因此喚醒這些等待者。

實例:
信號量在絕大部分情況下作為互斥鎖使用,下面以console驅動系統為例說明信號量的使用。

在內核源碼樹的kernel/printk.c中,使用宏DECLARE_MUTEX聲明了一個互斥鎖console_sem,它用於保護console驅動列表console_drivers以及同步對整個console驅動系統的訪問。

C. linux 信號量是什麼怎麼用

Linux信號量(semaphore)是一種互斥機制。即對某個互斥資源的訪問會收到信號量的保護,在訪問之前需要獲得信號量。
在操作完共享資源後,需釋放信號量,以便另外的進程來獲得資源。獲得和釋放應該成對出現。
獲得信號量集,需要注意的是,獲得的是一個集合,而不是一個單一的信號量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系統根據這個值來獲取信號量集。
nsems:此信號集包括幾個信號量。
semflg:創建此信號量的屬性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功則返回該信號量集的ID。
註:
既指定IPC_CREAT又指定IPC_EXCL時,如果系統中該信號量集已經存在,則馬上返回。
如果需要獲得存在的信號量,則將此參數置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信號量ID。
senum:對信號量集中的第幾個信號量進行控制。(從0開始)
cmd:需要進行的操作。(SETVAL是其中的一個)。
根據cmd的不同可能存在第四個參數,cmd=SETVAL時,表示同時信號量可以被獲得幾次,如第四個參數
num=1表示只能被獲得一次,既被信號量保護的資源只能同時被一個程序使用。
該系統調用,是在對信號量初始化時用的。
-3: 「3」前面加了"-"表示當需要使用互斥資源時應該做這步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //該信號量集中的第幾個信號量。
int sem_op;//需要獲得還是釋放信號量
int sem_flg;//相關動作
};
num_elements:需要對該信號量集中的多少個信號量進行處理。
獲得信號量時,將sembuf結構提初始化為:
sem_num = 0; //該信號量集中的首個信號量
sem_op = -1; //獲得信號量
sem_flag = IPC_NOWAIT; //如果不能獲得信號量,馬上返回。
semop(semid,_sem,1);
同理釋放信號量時,將sem_op設為1.
以上是對信號量的簡單處理

D. linux進程間信號量的分配釋放

和用於分配、釋放共享內存的 shmget 和 shmctl 類似,系統調用 semget 和 semctl 負責分配、釋放信號量。調用 semget 函數並傳遞如下參數:一個用於標識信號量組的鍵值,該組中包含的信號量數量和與 shmget 所需的相同的許可權位標識。該函數返回的是信號量組的標識符。您可以通過指定正確的鍵值來獲取一個已經存在的信號量的標識符;這種情況下,傳遞的信號量組的容量可以為0。
信號量會一直保存在系統中,甚至所有使用它們的進程都退出後也不會自動被銷毀。最後一個使用信號量的進程必須明確地刪除所使用的信號量組,來確保系統中不會有太多閑置的信號量組,從而導致無法創建新的信號量組。可以通過調用semctl來刪除信號量組。調用時的四個參數分別為信號量組的標識符,操作的信號量在組中的編號、常量IPC_RMID 和一個 union semun 類型的任意值(被忽略)。調用進程的有效用戶 id 必須與分配這個信號量組的用戶 id 相同(或者調用進程為 root 許可權亦可)。與共享內存不同,刪除一個信號量組會導致 Linux 立即釋放資源。
代碼 5.2 展示了用於分配和釋放一個二元信號量的函數。
代碼 5.2 (sem_all_deall.c)分配和釋放二元信號量
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h> /* 我們必須自己定義 semun 聯合類型。 */
union semun { int val; struct semid_ds *buf; unsigned short int *array; struct seminfo *__buf; };
/* 獲取一個二元信號量的標識符。如果需要則創建這個信號量 */
int binary_semaphore_allocation (key_t key, int sem_flags)
{
return semget (key, 1, sem_flags);
} /* 釋放二元信號量。所有用戶必須已經結束使用這個信號量。如果失敗,返回 -1 */
int binary_semaphore_deallocate (int semid)
{
union semun ignored_argument; return semctl (semid, 1, IPC_RMID, ignored_argument);
}

E. linux常用信號量

  • linux的常用信號量

  1. BUS與SEGV
    二者都是錯誤信號,BUS表示匯流排錯誤,SEGV表示段錯誤,程序崩潰的時候99%都是這兩個錯誤導
    致的。進程可以捕獲和封鎖這兩類錯誤。內核對二者的默認處理是memory mp

  2. WINCH
    窗口改變信號(WINdown CHanged)。例如虛擬終端的行數發生變化時將發送WINCH信號,絕大多數
    文本編輯器都能捕獲WINCH信號自動進行重新配置。內核的默認處理是忽略該信號,並且不進行內存
    轉儲。
    進程可以捕獲或者封鎖該信號

  3. KILL
    殺死/刪除進程,編號為9

  4. STOP
    掛起/暫停正在執行的進程,直到收到CONT為止
    KILL STOP都不能夠被捕獲、封鎖或者忽略,默認處理都不會產生內存轉儲。

  5. CONT
    取消掛起,繼續執行進程

  6. TSTP
    是STOP信號的「軟」版本,即在用戶輸入Ctrl+Z時由終端驅動程序發送的信號。捕獲到該信號的進程通常
    清除它們的狀態,如何給自己發送一個STOP信號。TSTP的默認處理不會導致內存轉儲。

  7. INT
    中斷信號,編號為2
    當用戶輸入Ctrl+C時由終端驅動程序發送INT信號
    INT信號是終止當前操作的請求,簡單程序捕獲到INT信號時應該退出,擁有命令行或者輸入模式的那些
    程序應該停止他們正在做的事情,清除狀態,並等待用戶再次輸入。

  8. TERM
    軟體終止信號,編號為15
    TERM是請求徹底終止某項操作的信號,它期望進程清楚自己的狀態並退出

  9. QUIT
    退出信號,編號為3
    與TERM類似,不同之處在於QUIT信號的默認處理是內存轉儲,而TERM信號的默認處理沒有內存轉儲。

  10. HUP
    掛起信號,編號為1,有兩種解釋:
    守護進程理解HUP為重新設置的請求,如果守護進程能夠不用重新啟動就能夠重新讀取它自己的配置文
    件並調整自己以適應變化的話,那麼HUP信號通常可以用來觸發這種行為

  11. HUP
    信號有時有終端驅動程序生成,試圖用來清除(也就是終止)跟某個特定終端相連接的那些進程。例如
    當一個終端會話結束時,或者當一個Modem的連接不經意的斷開時,就可能出現這種情況。
    如果需要某些進程在會話結束之後繼續運行,那麼在C Shell中設法讓這些進程變成後台程序,
    ksh或者bash中可以用nohup來模擬這種行為。
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    進程的四種狀態

  12. runnable(可運行狀態)
    只要有CPU時間,進程就可以執行。一旦進程執行了不能立即完成的系統調用,Linux會把進程轉入
    睡眠狀態

  13. sleeping(睡眠狀態)
    進程在等待某些事件發生(如終端輸入、網路連接)

  14. zombie(僵化狀態)
    進程已經執行完畢並試圖消亡,但是狀態沒有收集完

  15. stopped(停止狀態)
    進程被掛起,不允許執行。進程收到STOP或者TSTP信號即進入停止狀態,可以用CONT信號來重新啟動

F. Linux下信號量的加減操作問題

void down(struct semaphore *sem); //不可中斷
int down_interruptible(struct semaphore *sem);//可中斷
int down_killable(struct semaphore *sem);//睡眠的進程可以因為受到致命信號而被喚醒,中斷獲取信號量的操作。
int down_trylock(struct semaphore *sem);//試圖獲取信號量,若無法獲得則直接返回1而不睡眠。返回0則 表示獲取到了信號量
int down_timeout(struct semaphore *sem,long jiffies);//表示睡眠時間是有限制的,如果在jiffies指明的時間到期時仍然無法獲得信號量,則將返回錯誤碼。

熱點內容
運行與編譯的區別 發布:2025-05-16 17:25:02 瀏覽:822
c語言for中continue 發布:2025-05-16 17:20:14 瀏覽:647
ftp儲存 發布:2025-05-16 17:04:08 瀏覽:504
家悅3010怎麼看電腦配置 發布:2025-05-16 17:02:38 瀏覽:885
sqlin傳參 發布:2025-05-16 17:02:37 瀏覽:889
python計算md5 發布:2025-05-16 17:02:32 瀏覽:427
看演算法頭疼 發布:2025-05-16 16:56:41 瀏覽:798
給定文件編譯成dll文件 發布:2025-05-16 16:45:05 瀏覽:730
熔噴機的配置有哪些 發布:2025-05-16 16:45:04 瀏覽:720
20149月二級c語言 發布:2025-05-16 16:22:29 瀏覽:961