當前位置:首頁 » 操作系統 » 常用演算法是

常用演算法是

發布時間: 2023-05-10 01:49:31

1. 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

2. 數據挖掘的常用演算法有哪幾類

有十大經典演算法

下面是網站給出的答案:
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。

2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。

3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。

4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。

5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。

6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。

7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。

8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

3. 10個常用演算法

原理:
二分法查找,也稱為折半法,是一種在有序數組中查找特定元素的搜索演算法。

一般步驟:
(1)確定該區間的中間位置K;
(2)將查找的值T與array[k]比較。
若相等,查找成功返回此位置;否則確定新的查找區域,繼續二分查找。每一次查找與中間值比較,可以確定是否查找成功,不成功當前查找區間將縮小一半,遞歸查找即可。

原理:
一種通過重復將問題分解為同類的子問題而解決問題的方法

典型例子:
斐波那契數列
描述: 斐波那契數列 指的是這樣一個數列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契數列") 自然中的斐波那契數列,這個數列從第3項開始,每一項都等於前兩項之和。

解決方式:

原理:
在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。
回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。
但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。

解決問題一般步驟:
1、 針對所給問題,定義問題的解空間,它至少包含問題的一個(最優)解。

2 、確定易於搜索的解空間結構,使得能用回溯法方便地搜索整個解空間 。

3 、以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索。

典型例子:
八皇後問題
描述:在8×8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問有多少種擺法。

解決方式: https://blog.csdn.net/weixin_41865447/article/details/80034433

概念:
將雜亂無章的數據元素,通過一定的方法按關鍵字順序排列的過程叫做排序。

分類:
非穩定排序演算法:快速排序、希爾排序、堆排序、直接選擇排序
穩定的排序演算法:基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序

十個常用排序演算法

利用計算機的高性能來有目的的窮舉一個問題解空間的部分或所有的可能情況,從而求出問題的解的一種方法。

分類:
枚舉演算法、深度優先搜索、廣度優先搜索、A*演算法、回溯演算法、蒙特卡洛樹搜索、散列函數等演算法。

將一個數據轉換為一個標志,這個標志和源數據的每一個位元組都有十分緊密的關系。

很難找到逆向規律

只要符合散列思想的演算法都可以被稱為是Hash演算法

對不同的關鍵字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),這種現象稱為 碰撞

原理
在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在 某種意義上的局部最優解
從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止。

一種近似演算法

一般步驟:
1、建立數學模型來描述問題;
2、把求解的問題分成若干個子問題;
3、對每一子問題求解,得到子問題的局部最優解;
4、把子問題的解局部最優解合成原來解問題的一個解。

典型例子:
0/1背包問題
馬踏棋盤
均分紙牌

例題: https://www.cnblogs.com/hust-chen/p/8646009.html

概念:
分治演算法的基本思想是將一個規模為N的問題分解為K個規模較小的子問題,這些子問題相互獨立且與原問題性質相同。求出子問題的解,就可得到原問題的解。即一種分目標完成程序演算法,簡單問題可用二分法完成。

一般步驟:
(1)分解,將要解決的問題劃分成若干規模較小的同類問題;
(2)求解,當子問題劃分得足夠小時,用較簡單的方法解決;
(3)合並,按原問題的要求,將子問題的解逐層合並構成原問題的解。

典型例子:
排序中:歸並排序、堆排序、快速排序;
實例:找偽幣、求最值、棋盤覆蓋

https://ke..com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297

概念:
用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。

動態規劃一般可分為線性動規,區域動規,樹形動規,背包動規四類。

舉例:
線性動規:攔截導彈,合唱隊形,挖地雷,建學校,劍客決斗等;
區域動規:石子合並, 加分二叉樹,統計單詞個數,炮兵布陣等;
樹形動規:貪吃的九頭龍,二分查找樹,聚會的歡樂,數字三角形等;
背包問題:01背包問題,完全背包問題,分組背包問題,二維背包,裝箱問題,擠牛奶(同濟)等;

應用實例:
最短路徑問題 ,項目管理,網路流優化等;

https://ke..com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin

概念:
在一個給定的字元文本內搜尋出自己想要找的一個字元串,平常所用的各種文本編輯器里的ctrl+F大多就是使用的這些字元匹配演算法。

分類:
KMP、BM、Sunday、Horspool、RK

參考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320

4. 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

5. 計算機常用演算法有哪些

貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。
模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html

6. 常見的分類演算法

常見的分類演算法如下:

(1)決策樹

決策樹是用於分類和預測的主要技術之一,決策樹學習是以實例為基礎的歸納學習演算法,它著眼於從一組無次序、無規則的實例中推理出以決策樹表示的分類規則。構造決策樹的目的是找出屬性和類別間的關系,用它來預測將來未知類別的記錄的類別。

(2)貝葉斯

貝葉斯(Bayes)分類演算法是一類利用概率統計知識進行分類的演算法,如樸素貝葉斯(Naive Bayes)演算法。這些演算法主要利用Bayes定理來預測一個未知類別的樣本屬於各個類別的可能性,選擇其中可能性最大的一個類別作為該樣本的最終類別。

(3)人工神經網路

人工神經網路(Artificial Neural Networks,ANN)是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在這種模型中,大量的節點(或稱」神經元」,或」單元」)之間相互聯接構成網路,即」神經網路」,以達到處理信息的目的。

(4)k-近鄰

k-近鄰(kNN,k-Nearest Neighbors)演算法是一種基於實例的分類方法。該方法就是找出與未知樣本x距離最近的k個訓練樣本,看這k個樣本中多數屬於哪一類,就把x歸為那一類。

(5)支持向量機

支持向量機(SVM,Support Vector Machine)是Vapnik根據統計學習理論提出的一種新的學習方法,它的最大特點是根據結構風險最小化准則,以最大化分類間隔構造最優分類超平面來提高學習機的泛化能力,較好地解決了非線性、高維數、局部極小點等問題。

7. 幾種常用的演算法簡介

1、窮舉法窮舉法是最基本的演算法設計策略,其思想是列舉出問題所有的可能解,逐一進行判別,找出滿足條件的解。
窮舉法的運用關鍵在於解決兩個問題:
在運用窮舉法時,容易出現的問題是可能解過多,導致演算法效率很低,這就需要對列舉可能解的方法進行優化。
以題1041--純素數問題為例,從1000到9999都可以看作是可能解,可以通過對所有這些可能解逐一進行判別,找出其中的純素數,但只要稍作分析,就會發現其實可以大幅度地降低可能解的范圍。根據題意易知,個位只可能是3、5、7,再根據題意可知,可以在3、5、7的基礎上,先找出所有的二位純素數,再在二位純素數基礎上找出三位純素數,最後在三位純素數的基礎上找出所有的四位純素數。
2、分治法分治法也是應用非常廣泛的一種演算法設計策略,其思想是將問題分解為若乾子問題,從而可以遞歸地求解各子問題,再綜合出問題的解。
分治法的運用關鍵在於解決三個問題:
我們熟知的如漢諾塔問題、折半查找演算法、快速排序演算法等都是分治法運用的典型案例。
以題1045--Square
Coins為例,先對題意進行分析,可設一個函數f(m,
n)等於用面值不超過n2的貨幣構成總值為m的方案數,則容易推導出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
這里的k是幣值為n2的貨幣最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
對於這樣的題目,一旦分析出了遞推公式,程序就非常好寫了。所以在動手開始寫程序之前,分析工作做得越徹底,邏輯描述越准確、簡潔,寫起程序來就會越容易。
3、動態規劃法
動態規劃法多用來計算最優問題,動態規劃法與分治法的基本思想是一致的,但處理的手法不同。動態規劃法在運用時,要先對問題的分治規律進行分析,找出終結子問題,以及子問題向父問題歸納的規則,而演算法則直接從終結子問題開始求解,逐層向上歸納,直到歸納出原問題的解。
動態規劃法多用於在分治過程中,子問題可能重復出現的情況,在這種情況下,如果按照常規的分治法,自上向下分治求解,則重復出現的子問題就會被重復地求解,從而增大了冗餘計算量,降低了求解效率。而採用動態規劃法,自底向上求解,每個子問題只計算一次,就可以避免這種重復的求解了。
動態規劃法還有另外一種實現形式,即備忘錄法。備忘錄的基本思想是設立一個稱為備忘錄的容器,記錄已經求得解的子問題及其解。仍然採用與分治法相同的自上向下分治求解的策略,只是對每一個分解出的子問題,先在備忘錄中查找該子問題,如果備忘錄中已經存在該子問題,則不須再求解,可以從備忘錄中直接得到解,否則,對子問題遞歸求解,且每求得一個子問題的解,都將子問題及解存入備忘錄中。
例如,在題1045--Square
Coins中,可以採用分治法求解,也可以採用動態規劃法求解,即從f(m,
1)和f(1,
n)出發,逐層向上計算,直到求得f(m,
n)。
在競賽中,動態規劃和備忘錄的思想還可以有另一種用法。有些題目中的可能問題數是有限的,而在一次運行中可能需要計算多個測試用例,可以採用備忘錄的方法,預先將所有的問題的解記錄下來,然後輸入一個測試用例,就查備忘錄,直接找到答案輸出。這在各問題之間存在父子關系的情況下,會更有效。例如,在題1045--Square
Coins中,題目中已經指出了最大的目標幣值不超過300,也就是說問題數只有300個,而且各問題的計算中存在重疊的子問題,可以採用動態規劃法,將所有問題的解先全部計算出來,再依次輸入測試用例數據,並直接輸出答案。
4、回溯法回溯法是基於問題狀態樹搜索的求解法,其可適用范圍很廣。從某種角度上說,可以把回溯法看作是優化了的窮舉法。回溯法的基本思想是逐步構造問題的可能解,一邊構造,一邊用約束條件進行判別,一旦發現已經不可能構造出滿足條件的解了,則退回上一步構造過程,重新進行構造。這個退回的過程,就稱之為回溯。
回溯法在運用時,要解決的關鍵問題在於:
回溯法的經典案例也很多,例如全排列問題、N後問題等。
5、貪心法貪心法也是求解最優問題的常用演算法策略,利用貪心法策略所設計的演算法,通常效率較高,演算法簡單。貪心法的基本思想是對問題做出目前看來最好的選擇,即貪心選擇,並使問題轉化為規模更小的子問題。如此迭代,直到子問題可以直接求解。
基於貪心法的經典演算法例如:哈夫曼演算法、最小生成樹演算法、最短路徑演算法等。

8. 有哪些常用的機器學習演算法

機器學習中常用的方法有:

(1) 歸納學習

符號歸納學習:典型的符號歸納學習有示例學習、決策樹學習。

函數歸納學習(發現學習):典型的函數歸納學習有神經網路學習、示例學習、發現學習、統計學習。

(2) 演繹學習

(3) 類比學習:典型的類比學習有案例(範例)學習。

(4) 分析學習:典型的分析學習有解釋學習、宏操作學習。

擴宏仔展資料:

機器學習常見演算法:

1、決策樹演算法

決策樹及其變種是一類將輸入空間分成不同的區域,每個蔽野區域有獨立參數的演算法。決策樹演算法充分利用了樹形模型,根節點到一個葉子節點是一條分類的路徑規則,每個葉子節點象徵一個判斷類別。先將樣本分成不同的子集,再進行分割遞推,直至每個子集得到同類型的樣本,從根節點開始測試,到子樹再到葉子節點,即可得出預測類別。此方法的特點是結構簡單、處理數據效率較高。

2、樸素貝葉斯演算法

樸素貝葉斯演算法是一種分類演算法。它不是單一演算法,而是一系列演算法,它們都有一個共同的原則,即被分類的每個特徵都與任何其他特徵的值無關。樸素貝葉斯分類器認為這些「特徵」中的每一個都獨立地貢獻概率,而不管特徵之間的任何相關性。然而,特徵並不總是獨立的,這通常被視為樸素貝葉斯演算法的缺點。簡而言之,樸素貝葉斯演算法允許我們使用概率給出一組特徵來預測一個類。與其他常見的分類方法相比,樸素貝葉斯演算法需要的訓練很少。在進行預測之前必須完成的唯一工作是找到特徵的個體概率分布的參數,這通常可以快速且確定地完成。這意味著即使對於高維數據點或大量數據點,樸素貝葉斯分類器也可以表現良好。

3、支持向量機演算法

基本思想可概括如下:首先,要利用一種變換將空間高維化,當然這種變換是非線性的,然後,在新的復雜空間取最優線性分類表面。由此種方式獲得的分類函數在形式上類似於神經網路演算法。支持向量機是統計學習領域中一個代表性演算法,但它與傳統方式的思維方法很不同,輸入空間、提高維度從而將問題簡短化,使問題歸結為線性可分的經典解問題。支持向量機應用於垃圾郵件識別,人臉識別等多種分類宏絕喊問題。

9. 程序員開發用到的十大基本演算法

演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。

演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1

演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

演算法步驟:

演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。

演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。

演算法步驟:

終止條件:n=1時,返回的即是i小元素。

演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。

深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

演算法步驟:

上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。

接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。

演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

演算法步驟:

演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。

該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。

演算法步驟:

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。

關於動態規劃最經典的問題當屬背包問題。

演算法步驟:

演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。

10. c語言常用演算法有哪些

0) 窮舉法
窮舉法簡單粗暴,沒有什麼問題是搞不定的,只要你肯花時間。同時對於小數據量,窮舉法就是最優秀的演算法。就像太祖長拳,簡單,人人都能會,能解決問題,但是與真正的高手過招,就頹了。
1) 貪婪演算法
貪婪演算法可以獲取到問題的局部最優解,不一定能獲取到全局最優解,同時獲取最優解的好壞要看貪婪策略的選擇。特點就是簡單,能獲取到局部最優解。就像打狗棍法,同一套棍法,洪七公和魯有腳的水平就差太多了,因此同樣是貪婪演算法,不同的貪婪策略會導致得到差異非常大的結果。
2) 動態規劃演算法
當最優化問題具有重復子問題和最優子結構的時候,就是動態規劃出場的時候了。動態規劃演算法的核心就是提供了一個memory來緩存重復子問題的結果,避免了遞歸的過程中的大量的重復計算。動態規劃演算法的難點在於怎麼將問題轉化為能夠利用動態規劃演算法來解決。當重復子問題的數目比較小時,動態規劃的效果也會很差。如果問題存在大量的重復子問題的話,那麼動態規劃對於效率的提高是非常恐怖的。就像斗轉星移武功,對手強它也會比較強,對手若,他也會比較弱。
3)分治演算法
分治演算法的邏輯更簡單了,就是一個詞,分而治之。分治演算法就是把一個大的問題分為若干個子問題,然後在子問題繼續向下分,一直到base cases,通過base cases的解決,一步步向上,最終解決最初的大問題。分治演算法是遞歸的典型應用。
4) 回溯演算法
回溯演算法是深度優先策略的典型應用,回溯演算法就是沿著一條路向下走,如果此路不同了,則回溯到上一個
分岔路,在選一條路走,一直這樣遞歸下去,直到遍歷萬所有的路徑。八皇後問題是回溯演算法的一個經典問題,還有一個經典的應用場景就是迷宮問題。
5) 分支限界演算法
回溯演算法是深度優先,那麼分支限界法就是廣度優先的一個經典的例子。回溯法一般來說是遍歷整個解空間,獲取問題的所有解,而分支限界法則是獲取一個解(一般來說要獲取最優解)。

熱點內容
伺服器無法通過ip訪問 發布:2025-05-16 14:26:13 瀏覽:539
網吧u盤拒絕訪問 發布:2025-05-16 14:13:50 瀏覽:260
無線網檢查網路配置是怎麼回事 發布:2025-05-16 14:04:03 瀏覽:220
網路爬蟲python代碼 發布:2025-05-16 14:03:26 瀏覽:516
汽車小組件怎麼弄到安卓桌面 發布:2025-05-16 13:51:12 瀏覽:220
linuxg編譯器下載 發布:2025-05-16 13:50:58 瀏覽:776
centosc編譯器 發布:2025-05-16 13:50:17 瀏覽:948
安卓手機如何變換桌面 發布:2025-05-16 13:39:33 瀏覽:515
sql存儲過程命令 發布:2025-05-16 13:17:54 瀏覽:146
用紙做解壓小玩具西瓜 發布:2025-05-16 13:04:09 瀏覽:936