當前位置:首頁 » 操作系統 » 分類決策演算法

分類決策演算法

發布時間: 2023-05-10 10:44:38

1. 決策樹演算法是按什麼來進行分類的

決策樹演算法是一種逼近離散函數值的方法。它是一種典型的分類方法,首先對數據進行處理,利用歸納演算法生成可讀的規則和決策樹,然後使用決策對新數據進行分析。本質上決策樹是通過一系列規則對數據進行分類的過程。
決策樹方法最早產生於上世紀60年代,到70年代末。由J
Ross
Quinlan提出了ID3演算法,此演算法的目的在於減少樹的深度。但是忽略了葉子數目的研究。C4.5演算法在ID3演算法的基礎上進行了改進,對於預測變數的缺值處理、剪枝技術、派生規則等方面作了較大改進,既適合於分類問題,又適合於回歸問題。
決策樹演算法構造決策樹來發現數據中蘊涵的分類規則.如何構造精度高、規模小的決策樹是決策樹演算法的核心內容。決策樹構造可以分兩步進行。第一步,決策樹的生成:由訓練樣本集生成決策樹的過程。一般情況下,訓練樣本數據集是根據實際需要有歷史的、有一定綜合程度的,用於數據分析處理的數據集。第二步,決策樹的剪枝:決策樹的剪枝是對上一階段生成的決策樹進行檢驗、校正和修下的過程,主要是用新的樣本數據集(稱為測試數據集)中的數據校驗決策樹生成過程中產生的初步規則,將那些影響預衡准確性的分枝剪除。

2. 常見決策樹分類演算法都有哪些

在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。

3. 決策樹法分為那幾個步驟

1、特徵選擇

特徵選擇決定了使用哪些特徵來做判斷。在訓練數據集中,每個樣本的屬性可能有很多個,不同屬性的作用有大有小。因而特徵選擇的作用就是篩選出跟分類結果相關性較高的特徵,也就是分類能力較強的特徵。在特徵選擇中通常使用的准則是:信息增益。

2、決策樹生成

選擇好特徵後,就從根節點觸發,對節點計算所有特徵的信息增益,選擇信息增益最大的特徵作為節點特徵,根據該特徵的不同取值建立子節點;對每個子節點使用相同的方式生成新的子節點,直到信息增益很小或者沒有特徵可以選擇為止。

3、決策樹剪枝

剪枝的主要目的是對抗「過擬合」,通過主動去掉部分分支來降低過擬合的風險。

【簡介】

決策樹是一種解決分類問題的演算法,決策樹演算法採用樹形結構,使用層層推理來實現最終的分類。

4. 常見的分類演算法有哪些

常見的分類演算法:

1、決策樹:決策樹是一種用於對實例進行分類的樹形結構。一種依託於策略抉擇而建立起來的樹。決策樹由節點(node)和有向邊(directed edge)組成。節點的類型有兩種:內部節點和葉子節點。其中,內部節點表示一個特徵或屬性的測試條件(用於分開具有不同特性的記錄),葉子節點表示一個分類。

2、貝葉斯:貝葉斯(Bayes)分類演算法是一類利用概率統計知識進行分類的演算法,如樸素貝葉斯(Naive Bayes)演算法。這些演算法主要利用Bayes定理來預測一個未知類別的樣本屬於各個類別的可能性,選擇其中可能性最大的一個類別作為該樣本的最終類別。由於貝葉斯定理的成立本身需要一個很強的條件獨立性假設前提,而此假設在實際情況中經常是不成立的,因而其分類准確性就會下降。

3、人工神經網路:人工神經網路(Artificial Neural Networks,ANN)是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在這種模型中,大量的節點(或稱」神經元」,或」單元」)之間相互聯接構成網路,即」神經網路」,以達到處理信息的目的。神經網路通常需要進行訓練,訓練的過程就是網路進行學習的過程。

5. 常用的分類演算法有支持向量機和

常用的分類演算法有決策樹,基於規則的分類演算法,神經網路,支持向量機和樸素貝葉斯分類法等。
貝葉斯分類演算法是統計學的一種分類方法,它是一類利用概率統計知識進行分類的演算法。
在許多場合,樸素貝葉斯(Na_veBayes,NB)分類演算法可以與決策樹和神經網路分類演算法相媲基閉美,該演算法能運用到大型資料庫中,而且方法簡單、分類准確率高、速度快。由於貝葉斯定理假設一個屬性值對給定類棗冊的影響獨立於其它屬搏岩裂性的值,而此假設在實際情況中經常是不成立的,因此其分類准確率可能會下降。為此,就衍生出許多降低獨立性假設的貝葉斯分類演算法,如TAN(treeaugmentedBayesnetwork)演算法。

6. 分類演算法 - SVM演算法

SVM的全稱是Support Vector Machine,即支持向量機,主要用於解決模式識別領域中的數據分類問題,屬於有監督學習演算法的一種。SVM要解決的問題可以用一個經典的二分類問題加以描述。如圖1所示,紅色和藍色的二維數據點顯然是可以被一條直線分開的,在模式識別領域稱為線性可分問題。然而將兩類數據點分開的直線顯然不止一條。圖2和3分別給出了A、B兩種不同的分類方案,其中黑色實線為分界線,術語稱為「決策面」。每個決策面對應了一個線性分類器。雖然在目前的數據上看,這兩個分類器的分類結果是一樣的,但如果考慮潛在的其他數據,則兩者的分類性能是有差別的。

之前在b站看到一個非常好的介紹!!十分推薦, 這是傳送門

按照我自己的理解,以二維數據為例,我們喂給模型已經分類好的數據,那麼假設有一線條可以將此部分數據正確劃分為2大部分,這樣可以形成2個等式,即橫線兩邊的數值歸類為1或者-1,一般情況下可以求出最大間隔即無數個解,因此需要一個限定條件求出最優的那條線條。限定方式為:無數個解形成一個解的范圍,距離邊緣相等的那條線條即是最優解。

有時候本來數據的確是可分的,也就是說可以用線性分類SVM的學習方法來求解,但是卻因為混入了異常點,導致不能線性可分,比如下圖,本來數據是可以按下面的實線來做超平面分離的,可以由於一個橙色和一個藍色的異常點導致我們沒法按照線性分類支持向量機方法來分類。

以上討論的都是在線性可分情況進行討論的,但是實際問題中給出的數據並不是都是線性可分的,比如有些數據可能是曲線的。

那麼這種非線性可分的數據是否就不能用SVM演算法來求解呢?答案是否定的。事實上,對於低維平面內不可分的數據,放在一個高維空間中去就有可能變得可分。以二維平面的數據為例,我們可以通過找到一個映射將二維平面的點放到三維平面之中。理論上任意的數據樣本都能夠找到一個合適的映射使得這些在低維空間不能劃分的樣本到高維空間中之後能夠線性可分。

當特徵變數非常多的時候,在高維空間中計算內積的運算量是非常龐大的。考慮到我們的目的並不是為找到這樣一個映射而是為了計算其在高維空間的內積,因此如果我們能夠找到計算高維空間下內積的公式,那麼就能夠避免這樣龐大的計算量,我們的問題也就解決了。實際上這就是我們要找的 核函數 ,即兩個向量在隱式映射後的空間中的內積。

(1)對於邊界清晰的分類問題效果好;
(2)對高維分類問題效果好;
(3)當維度高於樣本數的時候,SVM 較為有效;
(4)因為最終只使用訓練集中的支持向量,所以節約內存

(1)當數據量較大時,訓練時間會較長;
(2)當數據集的噪音過多時,表現不好;
(3)SVM 不直接提供結果的概率估計,它在計算時直接使用 5 倍交叉驗證。

(1)LR 與 SVM 都是分類演算法;
(2)LR 與 SVM 都是監督學習演算法;
(3)LR 與 SVM 都是判別模型;
(4)關於判別模型與生成模型的詳細概念與理解,筆者會在下篇博文給出,這里不詳述。
(5)如果不考慮核函數,LR 與 SVM 都是線性分類演算法,也就是說他們的分類決策面都是線性的

這里需要說明的是,LR 也是可以用核函數的,因在 LR 演算法里,每個樣本點都必須參與決策面的計算過程,也就是說,如果在 LR 里也運用核函數的原理,那麼每個樣本點都必須參與核計算,這帶來的計算復雜度是相當高的。所以在具體應用時,LR 很少運用核函數機制。

(1)損失函數不同;
(2)SVM 只考慮支持向量,而 LR 考慮全局(即遠離的點對邊界線的確定也起作用);
(3)在解決非線性問題時,SVM 採用核函數的機制,而 LR 通常不採用核函數的方法;
(4)SVM 的損失函數就自帶正則(損失函數中的12||w||2項),這就是為什麼 SVM 是結構風險最小化演算法的原因,而 LR 必須另外在損失函數上添加正則項;
(5)LR是參數模型,SVM是非參數模型,本質不同。
(6)在訓練集較小時,SVM 較適用,而 LR 需要較多的樣本。

(1)LR 與線性回歸都是廣義的線性回歸;
(2)線性回歸模型的優化目標函數是最小二乘,而 LR 則是似然函數;
(3)線性回歸在整個實數域范圍內進行預測,敏感度一致,而分類范圍,需要在[0,1]。邏輯回歸就是一種減小預測范圍,將預測值限定為[0,1]間的一種回歸模型,因而對於這類問題來說,邏輯回歸的魯棒性比線性回歸的要好。
(4)邏輯回歸的模型本質上是一個線性回歸模型,邏輯回歸都是以線性回歸為理論支持的。但線性回歸模型無法做到 sigmoid 的非線性形式,sigmoid 可以輕松處理 0/1 分類問題。
(5)線性回歸主要做預測,LR 主要做分類(如二分類);

7. 決策樹演算法的典型演算法

決策樹的典型演算法有ID3,C4.5,CART等。
國際權威的學術組織,數據挖掘國際會議ICDM (the IEEE International Conference on Data Mining)在2006年12月評選出了數據挖掘領域的十大經典演算法中,C4.5演算法排名第一。C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。C4.5演算法產生的分類規則易於理解,准確率較高。不過在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,在實際應用中因而會導致演算法的低效。
決策樹演算法的優點如下:
(1)分類精度高;
(2)生成的模式簡單;
(3)對雜訊數據有很好的健壯性。
因而是目前應用最為廣泛的歸納推理演算法之一,在數據挖掘中受到研究者的廣泛關注。

熱點內容
美嘉演算法口訣 發布:2025-05-16 06:03:15 瀏覽:952
c程序編譯連接 發布:2025-05-16 06:02:36 瀏覽:964
腳本魔獸 發布:2025-05-16 06:01:52 瀏覽:330
文件夾python 發布:2025-05-16 06:01:43 瀏覽:627
電腦我的世界伺服器游戲幣 發布:2025-05-16 05:27:25 瀏覽:488
索尼手機為什麼不能用安卓10 發布:2025-05-16 05:18:46 瀏覽:784
蔚來es6選擇哪些配置實用 發布:2025-05-16 05:18:05 瀏覽:130
小米如何掃碼wifi密碼 發布:2025-05-16 05:13:38 瀏覽:807
樓層密碼是什麼意思 發布:2025-05-16 05:13:37 瀏覽:13
創建文件夾失敗 發布:2025-05-16 05:12:59 瀏覽:397