常用的數據結構和演算法
① 演算法的性質是什麼常見的數據結構的類型是什麼
演算法的特點:
1、輸入:一個演算法必須有零個或以上輸入量。
2、輸出:一個演算法應有一個或以上輸出量,輸出量是演算法計算的結果。
3、明確性:演算法的描述必須無歧義,以保證演算法的實際執行結果是精確地符合要求或期望,通常要求實際運行結果是確定的。
4、有限性:依據圖靈的定義,一個演算法是能夠被任何圖靈完備系統模擬的一串運算,而圖靈機只有有限個狀態、有限個輸入符號和有限個轉移函數(指令)。而一些定義更規定演算法必須在有限個步驟內完成任務。
5、有效性:又稱可行性。能夠實現,演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現。
常用的數據結構有4種:
1.集合。2.線性結構。3.樹形結構。4.圖狀結構;
② 計算機考研:數據結構常用演算法解析(1)
數據結構是計算機考研408計算機學科專業基礎綜合的重要組成部分,考生需要認真復習,尤其是對於數據結構中一些常用的演算法問題,考生一定要弄懂弄會,理解的去掌握。獵考考研就帶大家一一梳理這些知識點。
第一章
◆ 數據:指能夠被計算機識別、存儲和加工處理的信息載體。
◆ 數據元素:就是數據的基本單位,在某些情況下,數據元素也稱為元素、結點、頂點、記錄。數據元素有時可以由若干數據項組成。
◆ 數據類型:是一個值的集合以及在這些值上定義的一組操作的總稱。
在高級語言程序中又分為:非結構的原子類型和結構類型
◆抽象數據類型(ADT):是指一個數學模型以及定義在該模型上的一組操作。
一個抽象的數據類型的軟體模塊通常包含定義和表示和實現
用三元組(D,S,P):數據對象、數據關系、基本操作
◆ 數據結構:指的是數據之間的相互關系,即數據的組織形式。一般包括三個方面的內容:
數據的邏輯結構、存儲結構和數據的運算。
◆ 邏輯結構:指各數據元素之間的邏輯關系。
◆ 存儲結構:就是數據的邏輯結構用計算機語言的實現。
◆ 線性結構:數據邏輯結構中的一類,它的特徵是若結構為非空集,則該結構有且只有一個開始結點和一個終端結點,並且所有結點都最多隻有一個直接前趨和一個直接後繼。線性表就是一個典型的線性結構。
◆ 非線性結構:數據邏輯結構中的另一大類,它的邏輯特徵是一個結點可能有多個直接前趨和直接後繼。
常用的存儲表示方法有四種:
◆ 順序存儲方法:它是把邏輯上相鄰的結點存儲在物理位置相鄰的存儲單元里,結點間的
邏輯關系由存儲單元的鄰接關系來體現。由此得到的存儲表示稱為順序存儲結構。
◆ 鏈接存儲方法:它不要求邏輯上相鄰的結點在物理位置上亦相鄰,結點間的邏輯關系是
由附加的指針欄位表示的。由此得到的存儲表示稱為鏈式存儲結構。
◆ 索引存儲方法:除建立存儲結點信息外,還建立附加的索引表來標識結點的地址。
◆ 散列存儲方法:就是根據結點的關鍵字直接計算出該結點的存儲地址。
漸近時間復雜度的表示法T(n)=O(f(n)),這里的"O"是數學符號,它的嚴格定義是"若T(n)和f(n)是定義在正整數集合上的兩個函數,則T(n)=O(f(n))表示存在正的常數C和n0 ,使得當n≥n0時都滿足0≤T(n)≤C·f(n)。"用容易理解的話說就是這兩個函數當整型自變數n趨向於無窮大時,兩者的比值是一個不等於0的常數。這么一來,就好計算了吧。
求某一演算法的時間復雜度是關於N的統計,下面的例子很有反面意義
x=91; y=100;
while(y>0)
if(x>100)
{x=x-10;y--;}
else x++;
◆ T(n)=O(1)
◇ 這個程序看起來有點嚇人,總共循環運行了1000次,但是我們看到n沒有? 沒。
◇ 這段程序的運行是和n無關的,就算它再循環一萬年,我們也不管他,只是一個常數階的函數。
考研有疑問、不知道如何總結考研考點內容、不清楚考研報名當地政策,點擊底部咨詢官網,免費領取復習資料:https://www.87dh.com/xl/
③ 一文帶你認識30個重要的數據結構和演算法
數組是最簡單也是最常見的數據結構。它們的特點是可以通過索引(位置)輕松訪問元素。
它們是做什麼用的?
想像一下有一排劇院椅。每把椅子都分配了一個位置(從左到右),因此每個觀眾都會從他將要坐的椅子上分配一個號碼。這是一個數組。將問題擴展到整個劇院(椅子的行和列),您將擁有一個二維數組(矩陣)。
特性
鏈表是線性數據結構,就像數組一樣。鏈表和數組的主要區別在於鏈表的元素不存儲在連續的內存位置。它由節點組成——實體存儲當前元素的值和下一個元素的地址引用。這樣,元素通過指針鏈接。
它們是做什麼用的?
鏈表的一個相關應用是瀏覽器的上一頁和下一頁的實現。雙鏈表是存儲用戶搜索鍵嘩顯示的頁面的完美數據結構。
特性
堆棧是一種抽象數據類型,它形式化了受限訪問集合的概念。該限制遵循 LIFO(後進先出)規則。因此,添加到堆棧中的最後一個元素是您從中刪除的第一個元素。
堆棧可以使用數組或鏈表來實現。
它們是做什麼用的?
現實生活中最常見的例子是在食堂中將盤子疊放在寬枝一起。位於頂部的板首先被移除。放置在最底部的盤子是在堆棧中保留時間最長的盤子。
堆棧最有用的一種情況是您需要獲取給定元素的相反順序。只需將它們全部推入堆棧,然後彈出它們。
另一個有趣的應用是有效括弧問題。給定一串括弧,您可以使用堆棧檢查它們是否匹配。
特性
隊列是受限訪問集合中的另一種數據類型,就像前面討論的堆棧一樣。主要區別在於隊列是按照FIFO(先進先出)模型組織的:隊列中第一個插入的元素是第一個被移除的元素。隊列可以使用固定長度的數組、循環數組或鏈表來實現。
它們是做什麼用的?
這種抽象數據類型 (ADT) 的最佳用途當然是模擬現實生活中的隊列。例如,在呼叫中心應用程序中,隊列用於保存等待從顧問那裡獲得幫助的客戶——這些客戶應該按照他們呼叫的順序獲得幫助。
一種特殊且非常重要的隊列類型是優先順序隊列。元素根據與它們關聯的「優先順序」被引入隊列:具有最高優先順序的元素首先被引入隊列。這個 ADT 在許多圖演算法(Dijkstra 演算法、BFS、Prim 演算法、霍夫曼編碼 )中是必不可少的。它是使用堆實現的。
另一種特殊類型的隊列是deque 隊列(雙關語它的發音是「deck」)。可以從隊列的兩端插入/刪除元素。
特性
Maps (dictionaries)是包含鍵集合和值集合的抽象數據類型。每個鍵都有一個與之關聯的值。
哈希表是一種特殊類型的映射。它使用散列函數生成一個散列碼,放入一個桶或槽數組:鍵被散列,結果散列指示值的存儲位置。
最常見的散列函數(在眾多散列函數中)是模常數函數。例如,如果常量是 6,則鍵 x 的值是x%6。
理想情況下,散列函數會將每個鍵分配給一個唯一的桶,但他們的大多數設計都採用了不完善的函數,這可能會導致具有相同生成值的鍵之間發生沖突。這種碰撞總是以某種方式適應的。
它們是做什麼用的?
Maps 最著名的應用是語言詞典。語言中的每個詞都為其指定了定義。它是使用有序映射實現的(其鍵按字母順序排列)。
通訊錄也是一張Map。每個名字都有一個分配給它的電話號碼。
另一個有用的應用是值的標准化。假設我們要為一天中的每一分鍾(24 小時 = 1440 分鍾)分配一個從 0 到 1439 的索引。哈希函數將為h(x) = x.小時*60+x.分鍾。
特性
術語:
因為maps 是使用自平衡紅黑樹實現的(文章後面會解釋),所以所有操作都在 O(log n) 內完成;所有哈希表操作都是常量。
圖是表示一對兩個集合的非線性數據結構:G={V, E},其中 V 是頂點(節點)的集合,而 E 是邊(箭頭)的集合。節點是由邊互連的值 - 描述兩個節點之間的依賴關系(有時與成本/距離相關聯)的線。
圖有兩種主要類型:有稿巧行向圖和無向圖。在無向圖中,邊(x, y)在兩個方向上都可用:(x, y)和(y, x)。在有向圖中,邊(x, y)稱為箭頭,方向由其名稱中頂點的順序給出:箭頭(x, y)與箭頭(y, x) 不同。
它們是做什麼用的?
特性
圖論是一個廣闊的領域,但我們將重點介紹一些最知名的概念:
一棵樹是一個無向圖,在連通性方面最小(如果我們消除一條邊,圖將不再連接)和在無環方面最大(如果我們添加一條邊,圖將不再是無環的)。所以任何無環連通無向圖都是一棵樹,但為了簡單起見,我們將有根樹稱為樹。
根是一個固定節點,它確定樹中邊的方向,所以這就是一切「開始」的地方。葉子是樹的終端節點——這就是一切「結束」的地方。
一個頂點的孩子是它下面的事件頂點。一個頂點可以有多個子節點。一個頂點的父節點是它上面的事件頂點——它是唯一的。
它們是做什麼用的?
我們在任何需要描繪層次結構的時候都使用樹。我們自己的家譜樹就是一個完美的例子。你最古老的祖先是樹的根。最年輕的一代代表葉子的集合。
樹也可以代表你工作的公司中的上下級關系。這樣您就可以找出誰是您的上級以及您應該管理誰。
特性
二叉樹是一種特殊類型的樹:每個頂點最多可以有兩個子節點。在嚴格二叉樹中,除了葉子之外,每個節點都有兩個孩子。具有 n 層的完整二叉樹具有所有2ⁿ-1 個可能的節點。
二叉搜索樹是一棵二叉樹,其中節點的值屬於一個完全有序的集合——任何任意選擇的節點的值都大於左子樹中的所有值,而小於右子樹中的所有值。
它們是做什麼用的?
BT 的一項重要應用是邏輯表達式的表示和評估。每個表達式都可以分解為變數/常量和運算符。這種表達式書寫方法稱為逆波蘭表示法 (RPN)。這樣,它們就可以形成一個二叉樹,其中內部節點是運算符,葉子是變數/常量——它被稱為抽象語法樹(AST)。
BST 經常使用,因為它們可以快速搜索鍵屬性。AVL 樹、紅黑樹、有序集和映射是使用 BST 實現的。
特性
BST 有三種類型的 DFS 遍歷:
所有這些類型的樹都是自平衡二叉搜索樹。不同之處在於它們以對數時間平衡高度的方式。
AVL 樹在每次插入/刪除後都是自平衡的,因為節點的左子樹和右子樹的高度之間的模塊差異最大為 1。 AVL 以其發明者的名字命名:Adelson-Velsky 和 Landis。
在紅黑樹中,每個節點存儲一個額外的代表顏色的位,用於確保每次插入/刪除操作後的平衡。
在 Splay 樹中,最近訪問的節點可以快速再次訪問,因此任何操作的攤銷時間復雜度仍然是 O(log n)。
它們是做什麼用的?
AVL 似乎是資料庫理論中最好的數據結構。
RBT(紅黑樹) 用於組織可比較的數據片段,例如文本片段或數字。在 Java 8 版本中,HashMap 是使用 RBT 實現的。計算幾何和函數式編程中的數據結構也是用 RBT 構建的。
在 Windows NT 中(在虛擬內存、網路和文件系統代碼中),Splay 樹用於緩存、內存分配器、垃圾收集器、數據壓縮、繩索(替換用於長文本字元串的字元串)。
特性
最小堆是一棵二叉樹,其中每個節點的值都大於或等於其父節點的值:val[par[x]]