介數值的演算法
㈠ 基於社區發現演算法和圖分析Neo4j解讀《權力的游戲》下篇
其中的分析和可視化是用Gephi做的,Gephi是非常流行的圖分析工具。但作者覺得使用Neo4j來實現更有趣。
節點中心度
節點中心度給出網路中節點的重要性的相對度量。有許多不同的方式來度量中心度,每種方式都代表不同類型的「重要性」。
度中心性(Degree Centrality)
度中心性是最簡單度量,即為某個節點在網路中的聯結數。在《權力的游戲》的圖中,某個角色的度中心性是指該角色接觸的其他角色數。作者使用Cypher計算度中心性:
MATCH (c:Character)-[:INTERACTS]- RETURN c.name AS character, count(*) AS degree ORDER BY degree DESC
character
degree
Tyrion
36
Jon
26
Sansa
26
Robb
25
Jaime
24
Tywin
22
Cersei
20
Arya
19
Joffrey
18
Robert
18
從上面可以發現,在《權力的游戲》網路中提利昂·蘭尼斯特(Tyrion)和最多的角色有接觸。鑒於他的心計,我們覺得這是有道理的。
加權度中心性(Weighted Degree Centrality)
作者存儲一對角色接觸的次數作為 INTERACTS 關系的 weight 屬性。對該角色的 INTERACTS 關系的所有 weight 相加得到加權度中心性。作者使用Cypher計算所有角色的這個度量:
MATCH (c:Character)-[r:INTERACTS]- RETURN c.name AS character, sum(r.weight) AS weightedDegree ORDER BY weightedDegree DESC
character
weightedDegree
Tyrion
551
Jon
442
Sansa
383
Jaime
372
Bran
344
Robb
342
Samwell
282
Arya
269
Joffrey
255
Daenerys
232
介數中心性(Betweenness Centrality)
介數中心性:在網路中,一個節點的介數中心性是指其它兩個節點的所有最短路徑都經過這個節點,則這些所有最短路徑數即為此節點的介數中心性。介數中心性是一種重要的度量,因為它可以鑒別出網路中的「信息中間人」或者網路聚類後的聯結點。
圖6中紅色節點是具有高的介數中心性,網路聚類的聯結點。
為了計算介數中心性,作者使用Neo4j 3.x或者apoc庫。安裝apoc後能用Cypher調用其170+的程序:
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.betweenness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreSET node.betweenness = scoreRETURN node.name AS name, score ORDER BY score DESC
name
score
Jon
1279.7533534055322
Robert
1165.6025171231624
Tyrion
1101.3849724234349
Daenerys
874.8372110508583
Robb
706.5572832464792
Sansa
705.1985623519137
Stannis
571.5247305125714
Jaime
556.1852522889822
Arya
443.01358430043337
Tywin
364.7212195528086
緊度中心性(Closeness centrality)
緊度中心性是指到網路中所有其他角色的平均距離的倒數。在圖中,具有高緊度中心性的節點在聚類社區之間被高度聯結,但在社區之外不一定是高度聯結的。
圖7 :網路中具有高緊度中心性的節點被其它節點高度聯結
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.closeness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreRETURN node.name AS name, score ORDER BY score DESC
name
score
Tyrion
0.004830917874396135
Sansa
0.004807692307692308
Robert
0.0047169811320754715
Robb
0.004608294930875576
Arya
0.0045871559633027525
Jaime
0.004524886877828055
Stannis
0.004524886877828055
Jon
0.004524886877828055
Tywin
0.004424778761061947
Eddard
0.004347826086956522
使用python-igraph
Neo4j與其它工具(比如,R和Python數據科學工具)完美結合。我們繼續使用apoc運行 PageRank和社區發現(community detection)演算法。這里接著使用python-igraph計算分析。Python-igraph移植自R的igraph圖形分析庫。 使用 pip install python-igraph 安裝它。
從Neo4j構建一個igraph實例
為了在《權力的游戲》的數據的圖分析中使用igraph,首先需要從Neo4j拉取數據,用Python建立igraph實例。作者使用 Neo4j 的Python驅動庫py2neo。我們能直接傳入Py2neo查詢結果對象到igraph的 TupleList 構造器,創建igraph實例:
from py2neo import Graphfrom igraph import Graph as IGraph graph = Graph query = ''' MATCH (c1:Character)-[r:INTERACTS]->(c2:Character) RETURN c1.name, c2.name, r.weight AS weight '''ig = IGraph.TupleList(graph.run(query), weights=True)
現在有了igraph對象,可以運行igraph實現的各種圖演算法來。
PageRank
作者使用igraph運行的第一個演算法是PageRank。PageRank演算法源自Google的網頁排名。它是一種特徵向量中心性(eigenvector centrality)演算法。
在igraph實例中運行PageRank演算法,然後把結果寫回Neo4j,在角色節點創建一個pagerank屬性存儲igraph計算的值:
pg = ig.pagerank pgvs = for p in zip(ig.vs, pg): print(p) pgvs.append({"name": p[0]["name"], "pg": p[1]}) pgvs write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.pagerank = n.pg '''graph.run(write_clusters_query, nodes=pgvs)
現在可以在Neo4j的圖中查詢最高PageRank值的節點:
MATCH (n:Character) RETURN n.name AS name, n.pagerank AS pagerank ORDER BY pagerank DESC LIMIT 10
name
pagerank
Tyrion
0.042884981999963316
Jon
0.03582869669163558
Robb
0.03017114665594764
Sansa
0.030009716660108578
Daenerys
0.02881425425830273
Jaime
0.028727587587471206
Tywin
0.02570016262642541
Robert
0.022292016521362864
Cersei
0.022287327589773507
Arya
0.022050209663844467
社區發現(Community detection)
圖8
社區發現演算法用來找出圖中的社區聚類。作者使用igraph實現的隨機遊走演算法( walktrap)來找到在社區中頻繁有接觸的角色社區,在社區之外角色不怎麼接觸。
在igraph中運行隨機遊走的社區發現演算法,然後把社區發現的結果導入Neo4j,其中每個角色所屬的社區用一個整數來表示:
clusters = IGraph.community_walktrap(ig, weights="weight").as_clustering nodes = [{"name": node["name"]} for node in ig.vs]for node in nodes: idx = ig.vs.find(name=node["name"]).index node["community"] = clusters.membership[idx] write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.community = toInt(n.community) '''graph.run(write_clusters_query, nodes=nodes)
我們能在Neo4j中查詢有多少個社區以及每個社區的成員數:
MATCH (c:Character) WITH c.community AS cluster, collect(c.name) AS members RETURN cluster, members ORDER BY cluster ASC
cluster
members
0
[Aemon, Alliser, Craster, Eddison, Gilly, Janos, Jon, Mance, Rattleshirt, Samwell, Val, Ygritte, Grenn, Karl, Bowen, Dalla, Orell, Qhorin, Styr]
1
[Aerys, Amory, Balon, Brienne, Bronn, Cersei, Gregor, Jaime, Joffrey, Jon Arryn, Kevan, Loras, Lysa, Meryn, Myrcella, Oberyn, Podrick, Renly, Robert, Robert Arryn, Sansa, Shae, Tommen, Tyrion, Tywin, Varys, Walton, Petyr, Elia, Ilyn, Pycelle, Qyburn, Margaery, Olenna, Marillion, Ellaria, Mace, Chataya, Doran]
2
[Arya, Beric, Eddard, Gendry, Sandor, Anguy, Thoros]
3
[Brynden, Catelyn, Edmure, Hoster, Lothar, Rickard, Robb, Roose, Walder, Jeyne, Roslin, Ramsay]
4
[Bran, Hodor, Jojen, Luwin, Meera, Rickon, Nan, Theon]
5
[Belwas, Daario, Daenerys, Irri, Jorah, Missandei, Rhaegar, Viserys, Barristan, Illyrio, Drogo, Aegon, Kraznys, Rakharo, Worm]
6
[Davos, Melisandre, Shireen, Stannis, Cressen, Salladhor]
7
[Lancel]
角色「大合影」
《權力的游戲》的權力圖。節點的大小正比於介數中心性,顏色表示社區(由隨機遊走演算法獲得),邊的厚度正比於兩節點接觸的次數。現在已經計算好這些圖的分析數據,讓我們對其進行可視化,讓數據看起來更有意義。
Neo4j自帶瀏覽器可以對Cypher查詢的結果進行很好的可視化,但如果我們想把可視化好的圖嵌入到其它應用中,可以使用Javascript可視化庫Vis.js。從Neo4j拉取數據,用Vis.js的neovis.js構建可視化圖。Neovis.js提供簡單的API配置,例如:
var config = { container_id: "viz", server_url: "localhost", labels: { "Character": "name" }, label_size: { "Character": "betweenness" }, relationships: { "INTERACTS": }, relationship_thickness: { "INTERACTS": "weight" }, cluster_labels: { "Character": "community" } }; var viz = new NeoVis(config); viz.render;
其中:
節點帶有標簽Character,屬性name;
節點的大小正比於betweenness屬性;
可視化中包括INTERACTS關系;
關系的厚度正比於weight屬性;
節點的顏色是根據網路中社區community屬性決定;
從本地伺服器localhost拉取Neo4j的數據;
在一個id為viz的DOM元素中展示可視化。
㈡ 社區檢測—GN(Girvan-Newman)演算法及其實現
在探討社區檢測這一重要領域時,我們將聚焦於一種經典演算法,即GN(Girvan-Newman)演算法及其實現。社區檢測,作為網路分析的核心任務之一,在大規模網路如在線社交平台中尤為重要。在面對數以百萬計的節點和邊時,有效劃分網路為多個緊密相連的社區成為可能的挑戰。
社區的定義在圖論中,是指節點的子集,這些節點之間緊密相連,而與其他社區的節點聯系較為鬆散。因此,社區檢測演算法對於理解網路結構,揭示潛在的組織模式至關重要。
社區檢測方法主要分為兩大類:凝聚方法與分裂方法。凝聚方法自空圖開始,逐步將邊添加到圖中,優先考慮強邊。分裂方法則相反,從完整的圖開始,迭代地移除邊,尤其是權重最大的邊。Girvan-Newman演算法即代表了分裂方法的典型應用。
在Girvan-Newman演算法中,社區的發現基於邊介數中心性(Edge Betweenness Centrality,EBC)的計算。該值衡量了網路中通過一條邊的最短路徑的數量,有助於識別關鍵連接節點的邊,進而通過移除這些邊來揭示潛在的社區結構。
計算EBC分數涉及一個迭代過程,首先需要識別網路中所有節點間的最短路徑。以一個示例圖為例,我們可以從任意節點出發,計算該節點與網路中所有其他節點間的最短路徑數量,以此為基準給邊分配EBC分數。
分配分數的步驟包括從根節點開始遍歷整個圖,計算節點分數後,再對剩餘節點重復此過程,最終得到網路中所有邊的分數。這些分數用於評估邊的連接重要性,為後續的社區劃分提供依據。
在Girvan-Newman演算法中,我們基於EBC分數的計算結果,迭代地移除得分最高的邊,直至圖分裂為多個獨立的子圖。這些子圖即為識別出的社區。
為了實現Girvan-Newman演算法,Python提供了一種直觀且高效的解決方案。藉助於相應的庫,如NetworkX,用戶可以輕松構建和分析復雜網路,實現演算法的關鍵步驟,包括EBC分數的計算與社區的劃分。
本文旨在提供一個簡潔的框架,展示Girvan-Newman演算法在社區檢測領域的應用及其實現方法。通過理解演算法的核心原理與實踐過程,讀者能夠更深入地探索網路分析的復雜性和多樣性。
