當前位置:首頁 » 操作系統 » 遺傳演算法後期

遺傳演算法後期

發布時間: 2025-08-09 10:36:22

A. 在遺傳演算法中如果個體有100個,交叉概率為0.1,則交叉個體數為10。但現在採用自適應的交叉概率,

100個個體,交叉概率為0.1,並不代表交叉個體數為10個。這是一個概率問題。
另外,交叉概率一般會取0.5-1這個范圍內,0.1未免有點小。
自適應的遺傳演算法,一般在迭代初期會有較大的交叉概率,越往迭代後期,交叉概率越小。
而變異概率則相反。

B. 用改進遺傳演算法求取水文地質參數

任廣軍1 張勇2

(1.山東省魯南地質工程勘察院,兗州272000;2.山東省地礦工程集團有限公司,濟南250013)

作者簡介:任廣軍(1972—),男,工程師,主要從事水文地質、環境地質等。

摘要:本文利用非穩定流抽水試驗資料,採用改進的十進制遺傳演算法在計算機上自動優選含水層水文地質參數。該方法同傳統上使用的配線法相比較,具有節省時間,減少人工配線誤差,所求參數逼真,且能對一些線性、非線性問題求解,具有很高的推廣和應用價值。

關鍵詞:遺傳演算法;隨機模擬;含水層;水文地質參數;優選

0 引言

利用改進的十進制遺傳演算法,根據抽水試驗資料來認識水文地質條件、反求水文地質參數是水文地質計算中的基本問題。具體地講,在探明含水層范圍、類型的基礎上,建立描述該含水層水流運動模型,利用抽水試驗過程中的地下水位變化過程資料來確定水文地質參數。

雖然非穩定抽水試驗公式適用條件非常苛刻,但能反映出含水層非穩定流的一些基本特點,還可運用疊加原理解決某些比較復雜的非穩定流問題。此外,作為檢驗數值方法精確性的重要依據,具有廣泛應用和發展前景。

目前,由於非穩定流抽水試驗確定水文地質參數的具體實現方法主要有人工配線法或以計算輔助的配線法,但這種方法的效果好壞完全取決於肉眼觀察,帶有很大的主觀性。本文作者選取了一些典型實例,採用遺傳演算法建立了一種計算機全自動求參的全局優選法,通過與人工配線分析比較,確定本方法計算機求參的高精度與高可靠性。

求取參數是通過實測結果與模型計算結果的最佳擬合(模擬)程度來實現的,參數的精確程度在很大程度上取決於實測資料的精度。

1 遺傳演算法介紹

生物的進化是一個奇妙的優化過程,它通過選擇淘汰,突然變異,基因遺傳等規律產生適應環境變化的優良物種。遺傳演算法是根據生物進化思想而啟發得出的一種全局優化演算法。

遺傳演算法的概念最早是由Bagley J.D在1967年提出的;而開始遺傳演算法的理論和方法的系統性研究的是1975年,這一開創性工作是由Michigan大學的J.H.Holland所實行。當時,其主要目的是說明自然和人工系統的自適應過程。

遺傳演算法簡稱GA(Genetic Algorithm),在本質上是一種不依賴具體問題的直接搜索方法。遺傳演算法在模式識別、神經網路、圖像處理、機器學習、工業優化控制、自適應控制、生物科學、社會科學等方面都得到應用。在人工智慧研究中,現在人們認為「遺傳演算法、自適應系統、細胞自動機、混沌理論與人工智慧一樣,都是對今後十年的計算技術有重大影響的關鍵技術」。

2 目標函數的確定

通過綜合考慮計算程序的運算時間、速度以及含水層的類型,確立利用抽水實測資料和計算資料的擬合程度為目標函數。其計算公式為:

山東省環境地質文集

式中:s實測為實測抽水試驗觀測孔的降深;s計算為計算抽水試驗觀測孔的降深;NT為計算時段。

3 計算實例及結果分析

3.1 承壓含水層地下水降深公式

承壓含水層地下水降深公式為:

山東省環境地質文集

式中:S為以固定流量Q抽水時與抽水井距離為r處任一時間的水位降深(m);T為導水系數;Q為涌水量;W(u)為井函數,是一個指數積分函數:

山東省環境地質文集

式中:u為井函數的自變數,

其中s為承壓含水層的儲存系數;T為含水層的導水系數;t為時間。

例1:某地區進行非穩定流抽水試驗。區域地層剖面是:地表下18~25 m是由含礫粗砂層組成的含水層,其底板由粘土質沉積物組成,18 m以上是粘土、泥炭層。抽水井的過濾器安裝在含水層的整個厚度上。觀測孔距抽水井30m,觀測資料如表1所示。主井作定流量抽水,Q=788m3/d,抽水接近14小時。試根據觀測資料求取水文地質參數。

(1)lgS-lgt配線法所求參數:T配線=439m2/d,s配線=1.694×10-4

(2)S-lgt直線圖解法所求參數:T配線=450.7m2/d,s配線=1.392×10-4

(3)計算機所求參數:T=383.0088m2/d,s= 1.78×10-4

為更直觀地說明上述所求參數的可靠性,由上述參數所求計算降深與實測降深進行比較(圖1)。通過比較,進一步確定了計算機求參的高精度與穩定性。承壓含水層配線參數與優選參數比較分析:T配線=439m2/d,s配線=0.0001694;T計算=383.0088m2/d,s計算=0.0001780。

表1 遺傳演算法計算水位降深與實測水位降深結果表

圖1 計算降深與實測降深比較圖

3.2 在有越流補給的承壓含水層地下水降深公式

在有越流補給的承壓含水層地下水降深公式為:

山東省環境地質文集

式中:u同(3)式;

為越流井函數,本文中

採用數值積分:

山東省環境地質文集

例2:有一無限分布的承壓含水層,厚度20m,其底部為絕對隔水的粘土層;上部為弱透水的亞砂土層,厚2m;弱透水層之上為潛水含水層。在承壓含水層中有一完整抽水井,抽水時的穩定流量Q=5530m3/d。距抽水井r=17.34m處有一觀測孔據觀測知,在抽水過程中上部潛水的水位不變。抽水層的水位降深值載於表2,試計算含水層水文地質參數。

(1)lgS-lgt配線法所求參數:T配線=853.50m2/d,s配線=4.20×10-4;B配線=568.50m;

(2)lgS-lgt配線法所求參數:T計算=817.19m2/d,s計算=4.31×10-4;B計算=482.80m。

為更直觀地說明上述所求參數的可靠性,由上述參數所求計算降深與實測降深進行比較(圖2)。通過比較,進一步確定了計算機求參的高精度與穩定性。有越流時承壓含水層優選參數誤差分析:T配線=853.50m2/d,s配線=0.00042,B配線=568.50m;T計算=817.1950m2/d,s計算=0.00043103,B計算=482.798m。

表2 遺傳演算法計算水位降深與實測水位降深結果表

續表

圖2 計算降深與實測降深比較圖

3.3 考慮有滯後補給的潛水含水層地下水降深公式

根據博爾頓理論,潛水含水層地下水降深公式計算公式可分為抽水前期、抽水中期和抽水後期。參數優選主要根據抽水前期和抽水後期的資料擬合而得:

山東省環境地質文集

其中D為疏干因子。

抽水前期計算公式:

抽水後期計算公式:同(2)式。

4 結論及不足之處

4.1 結論

通過上述實例計算結果表明:計算結果同人工加以計算機輔助配線法相比較,其計算水文地質參數精度較高,且其參數初值依賴程度較低,對於復雜的線性、非線性及多態性、多峰值問題在全局優化方面有著其他方法所無法比擬的優勢,具有很高的推廣和應用價值。

4.2 不足之處

遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還存在著各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最優解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對於遺傳演算法,一是還需要進一步研究其數學基礎理論;二是還需要在理論上證明它與其他優化技術的優劣及原因;三是還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。此外,對於地下水滲流問題的數值解反求多類各種水文地質參數雖有成功實例,對於運算速度問題,還存在著相當大的難度。

參考文獻

陳崇希,唐仲華.1990.地下水流動問題數值方法.武漢:中國地質大學出版社

陳喜.1998.含水層水文地質參數自動優選方法.工程勘察,(2)

郭東屏.1994.地下水動力學.西安:陝西科學技術出版社

GB 50027—2001 供水水文地質勘察規范

李俊亭,王愈吉.1987.地下水動力學.北京:地質出版社

劉寶碇,趙瑞清,王綱.2003.不確定規劃及應用.北京:清華大學出版社

朱國祥,王峰.1999.利用配線法水文地質參數計算機程序簡介.工程勘察,(3)

鄒正盛,趙智榮.2001.淺析抽水水文地質參數確定中的問題.水文地質工程地質,(3)

C. 游戲人工智慧的遺傳演算法

上述的幾種演算法雖然可以模擬出比較好的智能表象,但遺憾的是沒有學習功能。而學習功能相對於智能生物是一個非常重要的功能。因此,我們簡單介紹一下遺傳演算法,並舉一個具體的例子。
生物的進化是一個奇妙的優化過程,它通過選擇淘汰,突然變異,基因遺傳等規律產生適應環境變化的優良物種。遺傳演算法是根據生物進化思想而啟發得出的一種全局優化演算法。
遺傳演算法簡介:對問題產生一個描述,對待解決問題進行編碼。隨機初始化群體X(0)=(x1, x2, … xn)。對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好壞。應用選擇運算元產生優良種群goodX(t)。對goodX(t)應用遺傳運算元,產生新一代群體X(t+1)。t:=t+1;如果不滿足終止條件繼續(3)。選擇運算元:選擇運算元從群體中按某一概率成對選擇個體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭模型。
例3:同樣看黑白棋,我們採用自學習的方法來模擬智能的實現。棋盤狀態採用 敵方=-1、空=0、我方=1。棋盤大小為64,我們對每一個格子用5*5的局部棋子來評價其戰略重要性。採用線性方式Important[node]=∑Wi*state[ i]。這樣我們就得到一個W[64][25]的表,對於每一種棋盤局勢它總能判斷出戰略重要性最大的點(姑且不論對與否)。這種編碼方式考慮了棋盤全局位置特性與局部局勢特性,大家可自行改進。
選取種群大小為30,隨機生成30個Wi[64][25]。
初始訓練階段:對每一個Wi[64][25],讓其判斷一些特定的戰略點,判斷力好的適應度大。後期訓練階段:和人對下,贏的多的適應度大。選擇適應度大的10個為產生優良種群goodX(t)。對goodX(t)應用遺傳運算元,產生新一代群體X(t+1)(30個個體)。交叉遺傳,可選取father[0-32][25]和mother的[32-64][25]產生新的個體。變異遺傳,對father[64]25]中的數值產生一些隨機變化從而生成新個體。t=t+1;如果不滿足終止條件繼續(3)。
採用這種方式,我們可以使程序自己學習,從而模擬智能。遺傳演算法的主體就是對問題編碼,然後通過進化方式進化出優秀(相對於適應度)的種群,編碼方式由具體問題決定,進化方式影響進化范圍和速度。通過這種方式的學習,模型一般都能得到此編碼方式下的最優編碼,從而具有超越人為編碼的性能。有興趣的讀者可以自行深入研究。

D. 非線性解析反演與遺傳演算法的結合反演方法

周輝

(青島海洋大學海洋地球科學學院,青島266003)

何樵登

(長春地質學院地球物理系,長春130026)

摘要各向異性介質參數反演通常為非線性優化問題。非線性反演方法可以分為兩大類:隨機搜索方法,如Monte Carlo法、模擬退火和遺傳演算法及基於非線性最小平方理論的非線性解析反演方法。遺傳演算法能尋找到全局最優解,但它為一種較費時的方法。非線性解析反演方法能給出一個與初始模型有關的局部最優解。然而,這種方法具有較快的收斂速度。遺傳演算法與非線性解析反演方法相結合的反演方法利用這兩種反演方法的優點而克服其缺點。因此,結合反演方法既能快速收斂,又能尋找到全局最優解。如何合理地將遺傳演算法和非線性解析反演方法結合是十分重要的。本文提出一種結合方案,即在連續若干次遺傳演算法迭代後作一次非線性解析反演。理論算例表明結合反演方法具有上述特點。

關鍵詞遺傳演算法非線性解析反演非線性結合反演各向異性介質

1引言

遺傳演算法為隨機搜索類方法之一,它以概率論為理論基礎,用於求解多極值復雜優化問題[9]。遺傳演算法不要求已知模型空間中後驗概率密度的形狀並能廣泛搜索模型空間。遺傳演算法模擬自然選擇和遺傳規律,並遵循適者生存的原則。

遺傳演算法由Holland在1975年提出[4]。Berg首先將遺傳演算法應用於地球物理優化問題[1]。Stoffa等系統地研究了種群大小、交叉概率、選擇概率和變異概率對多參數優化問題收斂性和收斂速度的影響[11]。Sen等討論了在選擇概率中引入溫度參數的作用並提出一些退火方案[10]。周輝等則研究了目標函數與收斂速度和解的精度的關系[16]

基於最小平方優化理論的非線性反演方法是兩大類反演方法之一。當給定的初始模型位於目標函數全局最優解所在的峰谷附近時,這種下降類方法能給出正確解而與初始模型位置無關。下降類演算法研究得較深入,應用較廣。

Tarantola提出一種基於廣義最小二乘法的多維多偏移距聲波地震波形解釋的一般性非線性地震波形反演方法[12]。隨後,Tarantola將該理論推廣於各向同性介質的彈性波反演[13]。Gauthier等用理論數據驗證了Tarantola提出的方法的正確性[2]。稍後,Tarantola研究非線性解析法反射波彈性反演的策略,指出以縱橫波的波阻抗和密度作為反演參數,才盡可能使反演參數之間相互獨立[14]。Pan用τ—P變換研究層狀聲學介質中平面波地震記錄非線性解析反演的理論和可行性[6]。為了更多地利用地震數據中的信息,包括VSP資料中反射和轉換信息,Mora作了一些工作[5]。當僅用反射數據時反演主要解決引起反射的P波和S波的波阻抗突變。當利用轉換數據時,則能分辨大尺度的P波和S波速度變化。Sambridge等改進了修改模型的方法[8]。在子空間中,可同時得到P波、S波波阻抗和密度。周輝等將非線性梯度反演方法推廣於多維、多道、多分量任意彈性各向異性介質參數的反演[17]

非線性解析反演方法和遺傳演算法結合的反演方法利用非線性解析反演和遺傳演算法的優點,克服它們的缺點。因此,結合反演方法不僅能搜索到全局最優解,而且能較快地收斂。Porsani等在遺傳演算法和廣義線性反演方法相結合方面作了一些研究[7]

本文討論各向異性介質的非線性解析反演方法和遺傳演算法與非線性解析反演方法相結合的結合反演方法[17]。對於遺傳演算法讀者可參考遺傳演算法的相關文獻[3,9~11]

2各向異性介質參數非線性解析反演方法

2.1共軛梯度法

反演的目的是利用地面或井中測得的位移場ui(xr,t)求取地下介質密度分布ρ(x)和彈性參數分布Cijkl(x)。ρ(x)、Cijkl(x)稱為模型參數。x為研究介質中或邊界上任一點,x=(x1,x2,x3),xr為接收點。反演的目標是使目標函數

岩石圈構造和深部作用

取極小值。其中Cd、Cm分別為數據(波場)和模型參數的協方差運算元。m0為先驗模型參數,m為反演過程中求得的模型參數。由於模型參數有多個,故用向量表示。ucal為給定m的波動方程正演記錄,uobs為觀測波場,上角標t表示轉置。地震記錄u和模型參數m之間的函數關系為

岩石圈構造和深部作用

g為非線性運算元,(2)式為波動方程的運算元形式。記第n次迭代時的模型參數為mn,則有

岩石圈構造和深部作用

及共軛梯度法的迭代公式[15]

岩石圈構造和深部作用

其中Gn為g對mn的Frechet導數,ηn為一常數,可由多種方法計算[5,8]

梯度

為模型空間的對偶空間中的一個元素。模型空間和其對偶空間以模型參數的協方差運算元Cm=Diag(Cp,Cc)由式(4d)相聯系。在後面將給出

的表達式。

式(4)為梯度反演方法的基本公式。當該公式中的每一量都已知時,迭代就可進行。在這些變數中,最關鍵的是梯度向量。

2.2目標函數

在最小二乘理論中,權函數是協方差運算元逆的核。假設數據集中的誤差是不相關的,它僅取決於時間或源和接收器的位置,那麼有[14]

岩石圈構造和深部作用

其中σ為數據的均方差。

2.3各向異性介質中的彈性波動方程

令fi(x,t;xs)是第s次激發的內體力密度,Ti(x,t;xs)是地球表面S的應力矢量分量,ni(x)是表面的單位法向分量。那麼與第s次激發相應的位移由以下微分方程組給出[15]

岩石圈構造和深部作用

2.4梯度向量

式(4)中梯度向量的分量為[17]

岩石圈構造和深部作用

其中,T為地震記錄的長度,

為反向傳播場,滿足

岩石圈構造和深部作用

其中,t∈[T,0],

滿足終了時間條件。

3結合反演方法

3.1遺傳演算法和非線性解析反演方法的優缺點

遺傳演算法是利用概率論來求解多極值復雜優化問題的一種隨機搜索方法,由一組隨機選取的模型開始,不需要更多的先驗信息,廣泛而有效地對模型空間的最優部分采樣。盡管遺傳演算法是基於自然選擇、遺傳規律,搜索模型空間的最優部分而求得最優解,但它是一種計算量很大的方法。由於地震模型空間大,用全局最優化方法估計各向異性介質參數的地震波形反演十分費時。

目標函數的梯度信息是非線性解析反演方法修改模型參數的依據,它能給出一個接近初始模型的一個局部最優解。如果初始模型選擇得合適,即當初始模型處在全局最優解所在的目標函數低谷時,非線性解析反演方法能收斂於全局最優解。然而,恰好給出一個接近全局最優解的初始模型的概率是非常小的,尤其對沒有模型參數的任何先驗信息的情況。但應強調的是,非線性解析反演方法具有較快的收斂速度。

發揮非線性解析反演方法快速收斂和遺傳演算法能搜索到全局最優解的優點,而克服前者僅能尋找到局部最優解和後者運算量大的缺點是很有意義的。非線性解析反演方法和遺傳演算法相結合的反演方法可達到上述目的。在結合反演方法中,遺傳演算法的作用是提供接近全局最優解的模型,非線性解析反演的作用是盡快求出全局最優解。因此,結合反演方法具有搜索到全局最優解的能力和比遺傳演算法收斂速度快的特點。

3.2結合方案

遺傳演算法在優化過程中連續不斷地搜索整個模型空間。在每次迭代結束後,得到一個本代的最優模型。根據遺傳演算法的數學原理[3],最優模型的數量在下一代中得以增加,同時經交叉和變異作用又有新的模型產生。在下一代種群中,最優模型可能與前一代的相同,也有可能劣於前一代的最優模型。所有這些最優模型可能在目標函數的同一低谷處,也有可能在其它低谷處。遺傳演算法尋找最優模型要經過多次迭代才能確定一個極值。遺傳演算法的隨機性導致遺傳演算法是一種費時的方法。然而正是遺傳演算法的這種隨機性保證了它能搜索到全局最優解。

如果將每次遺傳演算法迭代的最優解作為非線性解析反演的初始模型,非線性解析反演可以找出與初始模型毗鄰的局部最優解。由於非線性解析反演是一種確定性的方法,它按目標函數的梯度方向修改模型,所以非線性解析反演方法只需幾次迭代即可收斂。非線性解析反演求得的解是否為全局最優解,非線性解析反演方法本身是無法得以保證的。只有當遺傳演算法提供接近全局最優解的初始模型時,非線性解析方法反演才能收斂到全局最優解。

結合反演方法中遺傳演算法和非線性解析反演方法的匹配方式是十分重要的。非線性解析反演方法得到接近遺傳演算法提供的初始模型的局部最優解後,在以後若干代中因遺傳演算法的隨機性而使其最優解與該局部最優解相同。如果每次遺傳演算法迭代後作非線性解析反演,那麼結合反演的結果在幾代內都是相同的。顯然其中的一些非線性解析反演是沒有必要的。因此,結合方式應為在連續多次遺傳演算法迭代後作一次非線性解析反演,然後將非線性解析反演的結果作為下一代種群中的一個母本模型。圖1為結合反演的框圖。

圖1結合反演框圖

4算例

為了驗證結合反演方法的優越性,對一維多層橫向各向同性介質參數的反演理論實例作了分析。

圖2是目標函數值與迭代次數的關系圖。在該結合反演算例中每次遺傳演算法迭代後就作一次非線性解析反演迭代。結合反演的誤差在開始幾次迭代中下降很快,尤其在前3次。結合反演方法在第10次迭代達到的較小誤差,遺傳演算法在第42次迭代才達到。結合反演的誤差比遺傳演算法的跳躍得嚴重。這是因為非線性解析反演得到的模型在遺傳演算法中作為母代參加繁衍。這個模型因遺傳演算法的隨機性常常被新的模型替代。這兩個模型可能位於目標函數兩個不同的低谷中,因此非線性解析反演的結果不同。

盡管結合反演的目標函數有些振盪,但也存在連續幾次迭代目標函數幾乎不變的現象。這意味著這幾次迭代的最優模型是很接近的。在這種情況下非線性解析反演不能提供較大的改進。所以,此時的非線性解析反演是沒有必要的,否則只能增加計算量。

圖2結合反演(實線)和遺傳演算法(虛線)的誤差與迭代次數的關系

結合反演中每次遺傳演算法迭代後作一次非線性解析反演迭代

圖3是另一個例子。在該結合反演例子中,每五次遺傳演算法迭代作一次非線性解析反演。在這里遺傳演算法佔主要地位。此時結合反演的誤差函數明顯比遺傳演算法的小。結合反演的誤差在第5次迭代末突然下降,並在第10次迭代時的小誤差,遺傳演算法在42代才達到。遺傳演算法始終沒有到達結合反演的最小誤差。結合反演的誤差在後期迭代過程中平穩下降,這是遺傳演算法佔主導地位的原因。

從該例可知,若遺傳演算法與非線性解析反演方法比較合理地結合,結合反演方法比遺傳演算法具有快得多的收斂速度。

5結論

非線性結合反演方法揚遺傳演算法和非線性解析反演方法之長,抑其之短,它是一種具有較快收斂速度的全局反演方法。

在結合反演中遺傳演算法和非線性解析反演方法的結合方式是重要的。從算例可得出,五次遺傳演算法迭代後作一次非線性解析反演的結合反演的效果明顯優於每次遺傳演算法迭代後都作非線性解析反演的結合反演的效果。但是在結合反演中連續作多少次遺傳演算法迭代及連續迭代次數在整個迭代過程中的可變性還有待於進一步研究。

圖3結合反演(實線)和遺傳演算法(虛線)的誤差與迭代次數的關系

結合反演中每五次遺傳演算法迭代後作一次非線性解析反演迭代

在結合反演中遺傳演算法的作用是提供接近全局最優解的初始模型。結合反演的運算速度主要取決於遺傳演算法的運算速度。均勻設計理論可以應用於遺傳演算法以加快隨機搜索的速度。

與遺傳演算法相同,其它隨機搜索方法也可用來與非線性解析反演方法形成結合反演方法。

參考文獻

[1]E.Berg.Simple convergent genetic algorithm for inversion of multiparameter data.SEG60 Expanded Abstracts,1990,Ⅱ,1126~1128.

[2]O.Gauthier,J.Virieux and A.Tarantola.Two-dimensional nonlinear inversion of seismic waveforms:Numerical results.Geophysics,1986,51,1387~1403.

[3]D.E.Goldberg.Genetic Algorithms in Search,Optimiztion,and Machine Learning.Addison-Wesley,Reading,MA,1989.

[4]J.H.Holland.Adaptation in Natural and Artifical Systems.The University of Michigan Press,Ann Arbor,1975.

[5]P.Mora.2D elastic inversion of multi-offset seismic data.Geophysics,1988,52,2031~2050.

[6]G.S.Pan,R.A.Phinney,and R.I.Odom.Full-waveform inversion of plane-wave seismograms in stratified acoustic media:Theory and feasibility.Geophysics,1988,53,21~31.

[7]M.J.Porsani,P.L.Stoffa,M.K.Sen,et al..A combined Genetic and linear inversion algorithm for seismic wave-form inversion.SEG63 Expanded Abstracts,1993,692~695.

[8]M.S.Sambridge,A.Tatantola and Kennet.An alternative strategy for nonlinear inversion of seismic waveforms.Geophysical Prospecting,1991,39,723~736.

[9]M.Sambridge,and G.Drijkoningen.Genetic algorithms in seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.

[10]M.K.Sen,P.L.Stoffa.Rapid sampling of model space using genetic algorithms:examples from seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.

[11]P.L.Stoffa,M.K.Sen.Nonlinear multiparametre optimization using genetic algorithms:Inversion of plane-wave seismograms.Geophysics,1991,56,1794~1810.

[12]A.Tarantola.Inversion of seismic reflection data in the acoustic approximation.Geophysics,1984(a),49,1259~1266.

[13]A.Tarantola.The seismic reflection inverse problem.In:F.Santosa,Y.-H.Pao,W.W.System,and C.Holland Eds.Inverse problems of acoustic and elastic waves.Soc.Instr.Appl.Math.,1984(b),104~181.

[14]A.Tarantola.A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics,1986,51,1893~1903.

[15]A.Tarantola.Inverse problem theory:Methods for data fitting and model parameter estimation.Elsevier Science Publ.Co.Inc.,1987.

[16]周輝,何樵登.遺傳演算法在各向異性介質參數反演中的應用.長春地質學院學報,1995,25,增刊1,62~67.

[17]周輝.各向異性介質波動方程正演及其非線性反演方法研究.長春地質學院博士論文,1995.

熱點內容
rmijava 發布:2025-09-18 08:38:26 瀏覽:18
sql軟體和伺服器怎麼連接 發布:2025-09-18 08:27:47 瀏覽:937
手機java模擬器 發布:2025-09-18 07:13:29 瀏覽:418
linux線程的棧大小 發布:2025-09-18 07:09:42 瀏覽:634
廢舊電腦做linux伺服器 發布:2025-09-18 07:06:50 瀏覽:264
終端配置怎麼寫 發布:2025-09-18 06:44:42 瀏覽:804
ftp手機登陸 發布:2025-09-18 06:43:04 瀏覽:767
emc存儲800電話 發布:2025-09-18 06:32:49 瀏覽:964
c語言編程與設計 發布:2025-09-18 06:09:15 瀏覽:724
2016年預演算法 發布:2025-09-18 06:07:05 瀏覽:625