磁子存儲
❶ 什麼是磁電子隨機儲存器
在當今電子和信息高新技術迅速發展的時代,各種磁電子管和電子計算機(電腦)的發展和應用是十分重要的。雖然有的磁電子管技術還處於探索研究和未來設想階段,但從電控電子管晶體管到磁控電子管晶體管,從某種意義上說也是開辟了一個新的思路和新的領域。
從電子計算機發展的歷程來看,也有相類似的情況。從20世紀40年代電子計算機出現和應用以來,電子計算機的研發工作已經有了很快很大的進步,先後經歷了電子管計算機、晶體管計算機、集成電路計算機、大規模集成電路計算機及超大規模集成電路計算機等幾代的發展,各方面都有了很多變化。例如,在數據和信息的存儲方面,磁鼓、磁帶和磁碟等磁記錄設備一直是外存儲裝置。當然其磁記錄介質和磁頭材料、磁記錄方式(如縱向記錄和垂直記錄)等都經歷了多次的改進。內存儲裝置(也稱隨機存儲器)也經歷了多次改進,例如從磁芯存儲器、磁膜存儲器到半導體集成電路存儲器,再到半導體大規模集成電路、半導體超大規模集成電路存儲器,到今天的磁電子隨機存儲器的研發等。
什麼是磁電子隨機存儲器?它具有什麼特點呢?
磁電子隨機存儲器是目前尚處於初步探索研究的一類利用巨磁電阻效應的隨機存儲器。電阻式隨機存儲器是一個全新的概念,目前國際上的相關研究處於起步階段,中國的研究工作也在逐步展開。目前提出的有多層膜型巨磁電阻隨機存儲器和磁隧穿型巨磁電阻隨機存儲器。數字信息的「1」或「0」是用巨磁電阻的高或低來表示的,而巨磁電阻的高低則由這巨磁電阻輸出電壓的高低來測量。
首先我們來認識多層膜型巨磁電阻存儲器的一個存儲單元。它由一個多層膜巨磁電阻單元及輸入數字信息的寫入線(層)和輸出數字信息的讀出線(層)構成。數字信息「1」或「0」是由存儲單元的高電阻態或低電阻態來表現的,也就是由釘扎鐵磁層與自由鐵磁層中原子磁矩是互相反平行或平行狀態所決定,而讀出線(層)所讀出的脈沖電壓的高或低就表示「1」或「0」的數字信息。當然這不過是多層膜型巨磁電阻隨機存儲器一個存儲單元的情況,由大量存儲單元構成的隨機存儲器就更為復雜。
其次來認識磁隧穿型巨磁電阻的隨機存儲器的一個存儲單元。它是由一個磁隧穿型巨磁電阻單元及輸入數字信息的電流寫入線和輸出數字信息的讀出線構成的。同多層膜型巨磁電阻存儲單元的工作情況相似,數字信息「1」或「0」也是由存儲單元的高電阻態或低電阻態來表示的,也是由絕緣層兩邊的鐵磁層中原子磁矩是互相反平行或平行狀態所決定,讀出線(層)的輸出電壓的高或低就表示「1」或「0」的數字信息。它同多層膜型巨磁電阻存儲單元的主要差別是兩鐵磁層之間的弱磁層是絕緣層,因而每個單元具有較高的電阻、較高的輸出電壓、較低的輸出電流和較短的存取信息時間即較快的存取速度,存儲信息密度則同多層膜型巨磁電阻隨機存儲器相似,但弱磁絕緣層的厚度極薄,存在均勻性和工作可靠性問題。這些優缺點是需要在未來的研究和應用中加以特別注意的。
初步實驗結果表明,這種由巨磁電阻材料研製的磁電子隨機存儲器的結構較簡單,成本較低廉,存儲密度較高,存取數據時間較短,在工作電源去掉後仍能保持其所存儲的數字信息(稱為非易失性),抗強電磁輻射、抗粒子輻照和抗宇宙射線的能力都較強,因而具有許多優點。但是要使磁電子隨機存儲器從研究進入實際應用,也還有不少的問題需要解決,這也正是未來磁電子學面臨的一個重大問題。
從以上的介紹可以看出,磁電子學雖僅是磁學中一個新誕生的部分,研究時間尚短,但是它所蘊含的內容卻很豐富,已取得的應用也很多很重要,而研究和應用的前景更是十分廣闊的。
❷ 磁碟存儲器中磁軌,柱面,扇區有什麼作用
①磁軌:每個碟片的每一面都要劃分成若干條形如同心圓的磁軌,這些磁軌就是磁頭讀寫數據的路徑。磁碟的最外層是第0道,最內層是第n道。
②柱面:一個硬碟由幾個碟片組成,每個碟片又有兩個盤面,每個盤面都有相同數目的磁軌。所有盤面上相同半徑的磁軌組合在一起,叫做一個柱面。
③扇區:為了存取數據的方便,每個磁軌又分為許多稱之為扇區的小區段。每個磁軌(不管是里圈還是外圈)上的扇區數是一樣的,每個磁軌記錄的數據也是一樣多。所以內圈磁軌上的記錄密度要大於外圈磁軌上的記錄密度。
❸ 磁表面存儲器和半導體存儲器的保存時間短嗎
半導體存儲器價格高,體積大,保存時間向rom保存時間也很長,ram 就不行需要隨時通電,一掉電則數據全無。 磁表面存儲器常用的就是硬碟,你說它的存儲時間是長還是短呢? 只不過這兩種在價格上不佔優勢,但速度卻是光碟速度的幾百倍。
❹ 磁表面存儲器讀寫原理的記錄介質與磁頭
磁表面存儲器是目前使用最廣泛的外存儲器。所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。根據記錄載體的外形,磁表面存儲器有磁鼓、磁帶、磁碟、磁卡等。而在計算機系統中廣泛使用的是磁碟和磁帶;特別是磁碟,幾乎是稍具規模系統的基本配置。 1. 基體與磁層
在磁表面存儲器中,記錄信息的介質是一層很薄的磁層,它需要依附於具有一定機械強度的基體之上。根據不同磁表面存儲器的需要,基體分為軟質基體與硬質基體兩大類,它們所要求的磁層材料與製造工藝也相應不同。
(1)軟質基體與磁層
磁帶的運行方式要求採用軟質基體,如聚酯薄膜帶。軟盤的碟片在工作時與磁頭接觸,為了減少磁頭磨損,也要求用軟質基體,如聚酯薄片。
將具有距磁特性的氧化鐵微粒,滲入少量鈷,用樹脂粘合劑混合後,塗敷在基本
體之上加工形成約1微米厚的均勻磁層。這就是記錄信息用介質,屬於顆粒型材料。
(2)硬質基體與磁層
硬碟的運行方式對基體與磁層要求更高,一般採用鋁合金硬質碟片作為基體。為了進一步提高片光潔度與硬度,一些新型硬碟採用工程塑料、陶瓷、玻璃作為基體。
硬碟一般採用電鍍工藝在碟片上形成一個很薄的磁層,所用材料為具有矩磁特性的鐵鎳鈷合金。電鍍形成的磁層屬於連續型非顆粒型材料,又稱薄膜介質,其均勻性與性能大為提高。磁層厚度大約只有0.1-0.2微米
,上面再鍍一層保護膜,增加抗磨性和抗腐蝕性。 在更新的硬碟中,採用濺射工藝形成薄膜磁層,即用粒子撞擊陰極,使陰極處的磁性材料原子淀積為磁性薄膜。其性能優於鍍膜。
為了增加讀出信號的幅度,希望選用材料的剩磁感應強度 比較大。但 過大,磁化狀態翻轉時間增加,因而影響記錄密度。為了提高激勵密度,要求磁層盡量薄。以減少磁化所需時間;磁層薄又使磁通變化量 減少,將影響讀出信號幅度。這就要求改進讀出放大的電子技術,以降低對磁層製造工藝的要求,或在相同工藝水平條件下,提高密度與可靠性。
此外,要求磁層內部無缺陷,表面組織緻密、光滑、平整,磁層厚薄均勻,無污染,對環境溫度不敏感,性能穩定。 磁頭是實現讀/寫的關鍵元件。寫入時,將脈沖代碼以磁化電流形式加入磁頭線圈,使記錄介質產生相應的磁化狀態,即電磁轉換。讀出時,磁層中的磁化翻轉使磁頭的讀出線圈產生感應信號,即磁電轉換。
圖3-1 磁頭原理圖
圖3-1是磁頭的原理性示意圖。磁頭由高導磁材料構成,上面繞有線圈,有一個線圈兼做寫入磁化與讀出,或分設讀磁頭與寫磁頭。磁頭面向記錄介質的部分開有間隙,稱作磁頭間隙,簡稱頭隙。如果沒有這個間隙,磁化電流產生的磁通將只在閉合磁路中流過,對記錄介質沒有作用。開了間隙後,大部分磁通將流經頭隙所對應的記錄介質局部區域,使該作用區留下某種磁化狀態。讀出時,記錄信息的介質經過磁頭,由於對著磁頭的區域中存在磁化狀態翻轉,若由正向飽和變為負向飽和,或由負向飽和變為正向飽和,使磁頭的磁路中發生磁通變化 。讀出線圈產生感應電勢,即讀出信號。因此頭曦部分的形狀與尺寸至關重要,又稱工作間隙。磁頭的磁路其餘部分既可做成環狀,也可做成馬蹄形,影響不大。
在磁碟或磁帶進行讀/寫時,記錄介質運動而磁頭不動,磁頭在記錄介質上的磁化區形成磁軌。磁化後,磁軌中心部分達到磁飽和,而磁軌兩側的邊緣部分磁化不足。在寫入後,常將兩側進行清洗,稱為夾縫清除。
從磁頭的任務來看,在磁碟中,每個記錄面有一個磁頭,兼做讀磁頭與寫磁頭,又稱復合磁頭。在磁帶機中,經常一次並行地讀/寫幾個磁軌。每個磁軌中有一對磁頭:一個讀磁頭和一個寫磁頭,可以實現寫後讀出檢查。將幾個磁軌的讀磁頭與寫磁頭裝配為一體,道間加屏蔽,稱為組合頭快。
從製造工藝方面來看,分為早期的傳統工藝磁頭與近期的薄膜磁頭。
在早期的製造工藝中,或是用高導磁率鐵淦氧材料熱壓成形,或用高導磁率鐵鎳合金(坡莫合金)疊片組裝成形。通常是先製成幾部分其中一段繞有線圈,然後將他們粘接起來。用於軟盤的磁頭,將上述鐵芯封裝在特種塑料外殼里,外殼做成球面形或平面扣子形,便於安裝和定位,並使磁頭與盤面接觸良好,工作時磨損小。用於硬碟的磁頭,將鐵芯封裝在一個陶瓷塊內,該陶瓷塊稱為浮動塊,工作時可由氣墊使其浮空於盤面上;後來又將鐵芯和浮動塊改為用同樣的材料製成。
近期的硬碟採用薄膜磁頭,用類似於半導體工藝的淀積和成形技術,在基板上形成坡莫合金的鐵芯,和具有一定匝數的線圈,如平面螺旋式導體線圈。由於製造成型過程中使用掩模光刻技術,精度很高,可以獲得比較理想的極尖形狀和工作間隙;然後在基板上燒固一層氧化鋁和碳化鈦,再切割加工成浮動塊。相比之下,薄膜磁頭在各方面的性能均優於傳統工藝磁頭。
❺ 磁性粒子用作存儲材料是不是粒徑越小越好
相信你在物理或是化學方式制料過程中能達到分子級。所以,一般的磁記錄材料,要細一些,比表面積大一些要好的多。相對塗層密度要大一些。記錄效果當然也會好。
❻ U盤是半導體存儲設備還是磁存儲設備
電腦是如何工作的? --外部存儲器之半導體存儲設備篇
--------------------------------------------------------------------------------
在外部存儲器之中。半導體存儲設備是真正小巧和便攜的外部移動存儲器。它有著與磁存儲介質設備和光存儲設備完全不同的存儲原理,下面就讓我們一起來了解一下吧!
一、半導體存儲設備的原理
目前市面上出現了大量的攜帶型存儲設備,這些設備大部分是以半導體晶元為存儲介質。採用半導體存儲介質的優點在於可以把體積變的很小,便於攜帶;與硬碟類存儲設備不同,它沒有機械結構,所以不怕碰撞,沒有機械雜訊;與其它存儲設備相比,耗電量很小;讀寫速度也非常快。半導體存儲設備的主要缺點就是價格較高和容量有限。
現在的半導體存儲設備普遍採用了一種叫做「Flash Memory」的技術。從字面上可理解為閃速存儲器,它的擦寫速度快是相對於EPROM而言的。Flash Memory是一種非易失型存儲器,因為掉電後,晶元內的數據不會丟失,所以很適合用來作電腦的外部存儲設備。它採用電擦寫方式、可重復擦寫10萬次、擦寫速度快、耗電量小。
1.NOR型FIaSh晶元
我們知道三極體具備導通和不導通兩種狀態,這兩種狀態可以用來表示數據「0」和數據「1」,因此利用三極體作為存儲單元的三極體陣列就可作為存儲設備。Flash技術是採用特殊的浮柵場效應管作為存儲單元。這種場效應管的結構與普通場效應管有很大區別。它具有兩個柵極,一個如普通場效應管柵極一樣,用導線引出,稱為「選擇柵」;另一個則處於二氧化硅的包圍之中不與任何部分相連,這個不與任何部分相連的柵極稱為「浮柵」。通常情況下,浮柵不帶電荷,則場效應管處於不導通狀態,場效應管的漏極電平為高,則表示數據「1」。編程時,場效應管的漏極和選擇柵都加上較高的編程電壓,源極則接地。這樣大量電子從源極流向漏極,形成相當大的電流,產生大量熱電子,並從襯底的二氧化硅層俘獲電子,由於電子的密度大,有的電子就到達了襯底與浮柵之間的二氧化硅層,這時由於選擇柵加有高電壓,在電場作用下,這些電子又通過二氧化硅層到達浮柵,並在浮柵上形成電子團。浮柵上的電子團即使在掉電的情況下,仍然會存留在浮柵上,所以信息能夠長期保存(通常來說,這個時間可達10年)。由於浮柵為負,所以選擇柵為正,在存儲器電路中,源極接地,所以相當於場效應管導通,漏極電平為低,即數據「0」被寫入。擦除時,源極加上較高的編程電壓,選擇柵接地,漏極開路。根據隧道效應(即微觀粒子具有波動性的表現)和量子力學的原理,浮柵上的電子將穿過勢壘到達源極,浮柵上沒有電子後,就意味著信息被擦除了。NOR型Flash Memory的存儲原理如圖1所示。
由於熱電子的速度快,所以編程時間短,並且數據保存的效果好,但是耗電量比較大。
每個場效應管為一個獨立的存儲單元。一組場效應管的漏極連接在一起組成位線,場效應管的柵極連接在一起組成選擇線,可以直接訪問每一個存儲單元,也就是說可以以位元組或字為單位進行定址,屬於並行方式(圖2)。因此可以實現快速的隨機訪問,但是這種方式使得存儲密度降低,相同容量時耗費的矽片面積比較大,因而這種類型的Flash晶元的價格比較高。
特點:數據線和地址線分離、以位元組或字為單位編程、以塊為單位擦除、編程和擦除的速度慢、耗電量大和價格高。
2.NAND型FlaSh晶元
NAND型Flash晶元的存儲原理(圖3)與NOR型稍有不同,編程時,它不是利用熱電子效應,而是利用了量子的隧道效應。在選擇柵加上較高的編程電壓,源極和漏極接地,使電子穿越勢壘到達浮柵,並聚集在浮柵上,存儲信息。擦除時仍利用隧道效應,不過把電壓反過來,從而消除浮柵上的電子,達到清除信息的結果。
利用隧道效應,編程速度比較慢,數據保存效果稍差,但是很省電。
一組場效應管為一個基本存儲單元(通常為8位、16位等)。一組場效應管串列連接在一起,一組場效應管只有一根位線,屬於串列方式,隨機訪問速度比較慢。但是存儲密度很高,可以在很小的晶元上做到很大的容量(圖4)。
特點:讀寫操作是以頁為單位的,擦除是以塊為單位的, 因此編程和擦除的速度都非常快;數據線和地址線共用,採用串列方式,隨機讀取速度慢,不能按位元組隨機編程。體積小,價格低。晶元內存在失效塊,需要查錯和效驗功能。
3.AND型FlaSh晶元
AND技術是Hitachi公司的專利技術。AND是一種結合了NOR和NAND的優點的串列Flash晶元,它結合了Intel公司的MLC技術(見注),加上0.18μm的生產工藝,使生產出的晶元容量更大、功耗更低、體積更小,且因為採用單一操作電壓、塊比較小。並且由於內部包含與塊一樣大的RAM緩沖區,所以克服了因採用MLc技術帶來的性能降低。
特點:功耗特別低,讀電流為2mA,待機電流僅為1μA。晶元內部有RAM緩沖區,寫入速度快。
注:MLC(Multi-level Cell)技術,這是Intel提出的一種旨在提高存儲密度的新技術,通常數據存儲中存在一個闕值電壓,低於這個電壓表示數據「0」,高於這個電壓表示數據「1」,所以一個基本存儲單元(即一個場效應管)可存儲一位數據(「0」或者「1」)。現在將闕值電壓變為4種,則一個基本存儲單元可以輔出四種不同的電壓,令這四種電壓分別對應二進制數據00、0l、10、ll,則可以看出,每個基本存儲單元一次可存儲兩位數據(00、0l、10或者11)。如果闕值電壓變為8種,則一個基本存儲單元一次可存儲3位數據。闕值電壓越多,則一個基本存儲單元可存儲的數據位數也越多。這樣一來,存儲密度大大增加,同樣面積的矽片上就可以做到更大的存儲容量。不過闕值電壓越多,干擾也就越嚴重。
二、各種各樣的半導體存儲卡
1.ATA FIaSh卡
這種存儲卡是基於Flash技術(通常採用NAND型)的ATA介面的PC卡。在電源管理方面,具備休眠、待命、運行和閑置等4種模式,整體功耗比較小。具有I/0、內存和ATA三種介面方式。由於體積比較大,所以可以使用更多的存儲晶元,因而也可以做到更大的容量。主要用於筆記本電腦、數碼相機和台式PC機。
ATA Flash卡由控制晶元和存儲模塊兩部分組成。智能化的控制晶元有兩個作用,一是對Flash晶元的控制,另外就是完成PC卡的ATA(lDE)介面功能。由於介面支持IDE模式,所以可以通過簡單的轉接到PC機的IDE介面。它支持扇區方式讀寫,可以像操作硬碟一樣對它進行各種操作。介面有68個引腳。因為引腳中的電源和地兩個引腳比其它引腳要長,保證了信號腳先分離,最後斷電,所以支持熱插拔。
主要特點:存儲容量大(可達1GB)、即插即用、支持熱插拔和傳輸速率約10MB/s。
ATA FLASH卡需要專用的,讀寫設備,通常筆記本電腦內置了這種讀寫器。
2.CF卡
CF(Compact Flash)卡是一種小型移動存儲設備。這種標準是在1994年由ScanDisk公司提出的。CF卡兼容PCMCIA-ATA、TRUEIDE和ATA/ATAPI—4標准。其體積為 43mm X 36mm x 3.3mm,有50條引腳。主要用於數碼相機、MP3播放器和PDA等攜帶型產品。
CF卡的內部結構與ATA Flash卡類似,也是由控制晶元和存儲模塊組成。智能化的控制晶元提供一個連接到計算機的高電平介面,這個介面運行計算機發布命令對存儲卡以塊為單位進行讀寫操作。塊的大小為16K,有ECC效驗。控制晶元管理著介面協議、數據存儲、通過ECC效驗修復數據、錯誤診斷、電源管理和時鍾控制,一旦CF卡通過計算機的設置,它將以一個標準的 ATA硬碟驅動器出現,你可以像對其它硬碟一樣對它進行操作。
CF卡需要專用的讀寫設備。但是因為它兼容PCMCIA—ATA標准,所以可以通過一個轉接卡當做PCMCIA設備來使用。
3.SM卡
Smart Media Card簡稱SM卡,它是基於NAND型Flash晶元的存儲卡。它的最大特點是體積小(45.0mm x 37.0mm x 0.76mm)、重量輕(2克)。主要用於數碼相機、PDA、電子音樂設備、數碼錄音機、列印機、掃描儀以及攜帶型終端設備等。
從結構上講, SM卡非常簡單,卡的內部沒有任何控制電路,僅僅是一個Flash存儲器晶元而已,晶元被封裝到一個塑料卡片中,引腳與卡片表面的銅箔相連。
SM卡採用NAND型的Flash晶元,因而與其它存儲卡相比具有較低的價格。但因為它只用了一個存儲晶元,所以受到了很大的限制,不容易做到大容量。
SM卡可以採用專用的讀寫器進行讀寫,也可以通過一個轉接卡當做PC卡來讀寫。
主要特點:NAND結構適合於文件存儲;高速的讀寫操作;價格低廉,
4.Memory StiCk
Memory Stick(記憶棒)是SONY公司推出的一種小體積的存儲卡。它可用於各種消費類電子設備:數碼攝像機、攜帶型音頻播放設備、掌上電腦和行動電話等。對於音樂等一些收保護的內容具備數字版權保護功能。
SONY的Memory Stick具有防寫開關,採用10個引腳的串列連接方式,具有很高的可靠性。通過一個PC卡適配器,它也可作為一個PC卡在各種PC卡讀寫設備上使用。
Memory stick內部包括控制器和存儲模塊,控制晶元負責控制各種不同類型的Flash存儲晶元,並將負責並行數據和串列數據之間的相互轉換。另外 Memory Stick採用了一種專用的串列介面,發送數據時附加了一位效驗碼,最高工作頻率為20MHz。
5.MultiMedia卡(MMC)
MultiMedia卡(MMC)是由美國SanDisk公司和德國西門子公司共同開發的一種通用的低價位的可用於數據存儲和數據交換的多功能存儲卡。作為一種低價位、小體積、大容量的存儲卡,它的應用范圍很廣。可用於數碼相機、數碼攝像機、PDA、數碼錄音機、MP3和行動電話等設備。
MMC卡的數據通訊是基於一種可工作在低電壓范圍下的串列匯流排,它有7條引線。它支持MMC匯流排和SPI匯流排。MMC卡的結構。
特點:由於工作電壓低,耗電量很小;體積小,與一張郵票差不多大小;可對數據實行密碼保護;內置防寫功能。
6.Secure Digital Memory卡
SD卡是由Panasonic、Toshiba及美國SanDisk公司於1999年8月共同開發研製的一種基於NAND技術的Flash存儲卡。它的體積非常小,僅有一張郵票大小,但是容量卻很大。SD卡的另一個特點是具有非常好的數據安全性和版權保護功能。
7.UDISK
優遞卡,也稱郵遞卡。這是台灣八達創新科技開發的一種存儲卡,它的存儲部分仍是普通的Flash Memory。不同的是,它的內部具有兩種介面:一個是與電腦相連的USB介面,這是由專用的USB介面晶元來完成;另一方面有單片機構建了一個Device Interface(設備介面),這個介面可支持Serial Mode、 Byte Mode及Word Mode(圖20)。
優遞卡的一個優點是它可以支持各種類型的 Flash存儲晶元,例如:串列或並行Flash——NAND、 AND、NOR、Gate Flash及Mask ROM等。
編者按
電腦的外部存儲器包含磁存儲介質、光存儲設備和半導體存儲設備幾個方面的內容,對它們的介紹到本期就暫告一段落。下期我們將為大家介紹電腦的BIOS,這是電腦內部重要的信息儲存器,敬請期待!
❼ 快閃記憶體卡的存儲原理是什麼
快閃記憶體卡存儲原理是什麼?快閃記憶體(Flash Memory)是非揮發存儲的一種,具有關掉電源仍可保存數據的優點,同時又可重復讀寫且讀寫速度快、單位體積內可儲存最多數據量,以及低功耗特性等優點。其存儲物理機制實際上為一種新型EEPROM(電可擦除可編程只讀存儲)。是SCM(半導體存儲器)的一種。早期的SCM採用典型的晶體管觸發器作為存儲位元,加上選擇、讀寫等電路構成存儲器。現代的SCM採用超大規模集成電路工藝製成存儲晶元,每個晶元中包含相當數量的存儲位元,再由若干晶元構成存儲器。目前SCM廣泛採用的主要材料是金屬氧化物場效應管(MOS),包括PMOS、NMOS、CMOS三類,尤其是NMOS和CMOS應用最廣泛。RAM(隨機存取存儲),是一種半導體存儲器。必須在通電情況下工作,否則會喪失存儲信息。RAM又分為DRAM(動態)和SRAM(靜態)兩種,我們現在普遍使用的PC機內存即是SDRAM(同步動態RAM),它在運行過程當中需要按一定頻率進行充電(刷新)以維持信息。DDR DDR2內存也屬於SDRAM。而SRAM不需要頻繁刷新,成本比DRAM高,主要用在CPU集成的緩存(cache)上。PROM(可編程ROM)則只能寫入一次,寫入後不能再更改。EPROM(可擦除PROM)這種EPROM在通常工作時只能讀取信息,但可以用紫外線擦除已有信息,並在專用設備上高電壓寫入信息。EEPROM(電可擦除PROM),用戶可以通過程序的控制進行讀寫操作。快閃記憶體實際上是EEPROM的一種。一般MOS閘極(Gate)和通道的間隔為氧化層之絕緣(gate oxide),而Flash Memory的特色是在控制閘(Control gate)與通道間多了一層稱為「浮閘」(floating gate)的物質。拜這層浮閘之賜,使得Flash Memory可快速完成讀、寫、抹除等三種基本操作模式;就算在不提供電源給存儲的環境下,也能透過此浮閘,來保存數據的完整性。 Flash Memory晶元中單元格里的電子可以被帶有更高電壓的電子區還原為正常的1。Flash Memory採用內部閉合電路,這樣不僅使電子區能夠作用於整個晶元,還可以預先設定「區塊」(Block)。在設定區塊的同時就將晶元中的目標區域擦除干凈,以備重新寫入。傳統的EEPROM晶元每次只能擦除一個位元組,而Flash Memory每次可擦寫一塊或整個晶元。Flash Memory的工作速度大幅領先於傳統EEPROM晶元。 MSM(磁表面存儲)是用非磁性金屬或塑料作基體,在其表面塗敷、電鍍、沉積或濺射一層很薄的高導磁率、硬矩磁材料的磁面,用磁層的兩種剩磁狀態記錄信息"0"和"1"。基體和磁層合稱為磁記錄介質。依記錄介質的形狀可分別稱為磁卡存儲器、磁帶存儲器、磁鼓存儲器和磁碟存儲器。計算機中目前廣泛使用的MSM是磁碟和磁帶存儲器。硬碟屬於MSM設備。ODM(光碟存儲)和MSM類似,也是將用於記錄的薄層塗敷在基體上構成記錄介質。不同的是基體的圓形薄片由熱傳導率很小,耐熱性很強的有機玻璃製成。在記錄薄層的表面再塗敷或沉積保護薄層,以保護記錄面。記錄薄層有非磁性材料和磁性材料兩種,前者構成光碟介質,後者構成磁光碟介質。ODM是目前輔存中記錄密度最高的存儲器,存儲容量很大且碟片易於更換。缺點是存儲速度比硬碟低一個數量級。現已生產出與硬碟速度相近的ODM。CD-ROM、DVD-ROM等都是常見的ODM。
❽ 磁儲存原理
磁存儲技術的工作原理
是通過改變磁粒子的極性來在磁性介質上記錄數據。在讀取數據時,磁頭將存儲介質上的磁粒子極性轉換成相應的電脈沖信號,並轉換成計算機可以識別的數據形式。進行寫操作的原理也是如此。要使用硬碟等介質上的數據文件,通常需要依靠操作系統所提供的文件系統功能,文件系統維護著存儲介質上所有文件的索引。因為效率等諸多方面的考慮,在我們利用操作系統提供的指令刪除數據文件的時候,磁介質上的磁粒子極性並不會被清除。操作系統只是對文件系統的索引部分進行了修改,將刪除文件的相應段落標識進行了刪除標記。同樣的,目前主流操作系統對存儲介質進行格式化操作時,也不會抹除介質上的實際數據信號。正是操作系統在處理存儲時的這種設定,為我們進行數據恢復提供了可能。
值得注意的是,這種恢復通常只能在數據文件刪除之後相應存儲位置沒有寫入新數據的情況下進行。因為一旦新的數據寫入,磁粒子極性將無可挽回的被改變從而使得舊有的數據真正意義上被清除。另外,除了磁存儲介質之外,其它一些類型存儲介質的數據恢復也遵循同樣的原理,例如U盤、CF卡、SD卡等等。因為這些存儲設備也和磁碟一樣使用類似扇區、簇這樣的方式來對數據進行管理。舉個例子來說,目前幾乎所有的數碼相機都遵循DCIM標准,該標准規定了設備以FAT形式來對存儲器上的相片文件進行處理。
❾ 永磁體保留磁性的原理是
隨著時間的推移,由於溫度變化、機械損傷、腐蝕和不適當的儲存,永磁體確實會失去可忽略不計的磁性。
眾所周知,附著在冰箱上磁鐵會在幾年後脫落,隨著時間的推移,玩具上的磁鐵也會失去其強度。實際上,所謂的「永磁鐵」並不是真正的永久。
退磁——降低或消除磁體磁性的過程,通常是人為完成的,但也可以自然發生。
極端的溫度波動、由於機械損壞造成的體積損失、不適當的儲存、磁滯損耗和腐蝕都會導致磁鐵失去磁性。
時光會打磨掉磁鐵的磁性
原子磁矩與物體磁性
在我們進一步了解磁鐵如何失去磁性之前,讓我們先試著了解磁鐵如何產生磁性。
電磁力是自然界四種基本力之一,是帶電亞原子粒子運動的結果,尤其是電子。這些帶負電的粒子不斷地圍繞原子核旋轉,同時也在自轉。這兩種運動中的後一種,被稱為電子自旋,是一種內在的性質,在很大程度上促成了吸引力或排斥力的產生,我們稱之為磁力。
簡單地說,電子的公轉和自轉被認為產生了電流(電子流),這使得單個電子像微小的磁鐵一樣工作(電磁)。每一個電子都產生它們自己的磁偶極矩,分別是軌道磁偶極矩和自旋磁偶極矩,並結合起來產生一個凈原子磁偶極矩。
盡管質子和中子也繞著它們的軸旋轉,增加了原子的凈磁矩,但是它們產生的磁矩比電子小1000倍,因此可以忽略不計。
電子的運動是磁性產生的主要原因
每一個電子都可以看做是一個微小的磁鐵,而物體中都包含數萬億個電子,理應每一個物體都有磁性才對,為什麼我們周圍的一切都不是磁性的呢?
答案是:微觀電子產生的磁矩相互抵消,宏觀物體不顯磁性。
根據泡利不相容原理,同一個軌道殼層中的電子具有相反的自旋方向,因此會抵消彼此的磁矩。在某些元素中,如鐵和鈷(鐵磁性材料),最終的價態電子層只有一半被填滿,含有未成對電子。
由於沒有自旋方向相反的電子來中和它們,這些未成對電子共同賦予原子以磁力。
當形成晶體時,金屬原子可以把它們的磁矩排列在同一個方向,也可以不排列,這取決於能量大小,會以能量較低的方式排列。單個磁矩相互平行的區域稱為,磁疇和單個原子對外加磁場的響應構成了各種磁性材料分類的基礎。
鐵磁材料中的磁疇在存在外部磁場的情況下自行排列,從而形成永久磁鐵。
是什麼導致磁力的損失?
磁性材料不是真正的磁性材料,除非它的磁疇精確排列;任何單個磁疇方向的改變都會導致凈磁場強度的損失。各種自然因素可以促使這些磁疇隨機排列,最常見和最具破壞性的是高溫加熱。
宏觀物體雖然表面上看起來平靜無常,但在微觀層面上,原子卻在不停地振動。振動的程度取決於它們的能量狀態,而能量狀態又取決於溫度。溫度的任何微小波動都會影響原子振動的強度,從而影響總的磁場強度。溫度的降低會放大磁鐵的磁力,而溫度的升高會對其產生不利影響。
當磁體暴露在高溫下時,磁體中的原子開始以越來越快的速度振動,並且更加瘋狂。這導致一些磁疇的排列方式發生變化,導致凈磁性降低。在足夠高的溫度下,所有磁疇的排列變得隨機無序,隨之磁體完全失去磁性。磁體失去永久磁性的轉變溫度稱為居里溫度。
溫度與磁性
如果磁體被加熱到居里溫度以下的溫度,然後冷卻,磁體將恢復其磁性。然而,將磁體加熱到居里溫度以上後再冷卻,磁性恢復無望。在這種情況下,需要引入外部磁場來重新排列磁疇再次磁化材料。
不同材料的磁性隨溫度變化
雖然加熱是退磁的主要方法之一,但在日常生活中暴露在如此高的溫度下(鐵氧體磁體~ 460℃,鋁鎳鈷磁體~ 860℃,鈷磁體~ 750℃,磁體~ 310℃)是不常見的。磁性的自然喪失主要是其他因素導致的。
存儲不當
雖然看起來微不足道,但磁鐵的適當存儲對於確保它們不會隨著時間的推移而失去強度至關重要。
大多數磁鐵都含有適量的鐵,鐵在氧氣和水的存在下會發生氧化腐蝕。最常用和最強的永磁體,磁鐵,由於其含鐵量高(超過60%),也最容易受到腐蝕。由於腐蝕改變了使材料具有磁性的潛在化學結構(鐵→氧化鐵),導致磁性的損失。
為了防止氧化腐蝕,增加磁鐵使用時間,製造商已經開始採用防腐塗層,但在儲存磁鐵時仍需小心。
一塊磁鐵不正確地放置在另一個更強的磁體附近也會失去部分或全部磁性。不同磁體的相似磁極不應該互相接觸,因為強磁體將迫使弱磁體的磁疇改變方向;在某些情況下,磁極可能會完全反轉。這種由外部磁場引起的磁損耗稱為磁滯損耗。
除了磁鐵,日常生活中含有磁介質的物品,如信用卡、硬碟、顯示器等,在保存放置時也要避免由外部磁場引起的磁損耗。
結構損壞
最後,任何結構性損壞也會導致磁場強度的降低。顯然,由相同材料製成的磁鐵產生的磁場取決於磁鐵的大小。磁鐵越大,產生的磁場就越大。結構性損傷會使磁體的尺寸減小,從而降低其磁場強度。
此外,尖銳物體的撞擊,如反復敲打磁鐵或掉落在堅硬的物體表面上,會迫使磁疇排列方式發生改變降低磁性。這僅適用於某些永磁體。、釤鈷和鐵氧體磁體非常脆,如果掉落在堅硬的表面或被反復錘打,就會發生結構性損傷。另一方面,鋁鎳鈷磁體非常堅固,在機械應力下不會斷裂或破裂。
磁鐵的保存與「傳承」
為了延長磁鐵的壽命並防止磁力的損失,請將磁鐵存放在乾燥的地方。如果要把多個條形磁鐵放在一起,把一個磁鐵的N端貼在另一個磁鐵的S端,依此類推;馬蹄形磁鐵也可以像這樣儲存。
當多種力量合力奪走你的磁鐵的能量時,長期磁力的凈減少是非常微小的。例如,鈷磁體需要大約700年才能自然失去一半的強度,而釹磁體每100年才會失去大約5%的磁性。
所以,你可以放心,目前放在你抽屜里的磁鐵將會伴隨你一生,甚至可以作為傳家寶傳給你的孫子孫女們!
❿ 剛才我們老師說U盤屬於磁存儲器。我覺得應該是半導體存儲器呀!哪位
U盤是半導體存儲器,USB是英文Universal Serial Bus的縮寫,中文含義是「通用串列匯流排」,用第一個字母U命名,所以簡稱「U盤」。U盤內集成的是Flash晶元,存儲介質為半導體,為mos管。而mos管是金屬(metal)—氧化物(oxid)—半導體(semiconctor)場效應晶體管,或者稱是金屬—絕緣體(insulator)—半導體。
半導體存儲器和磁芯存儲器最大的不同,就是半導體存儲器體積小,容量大,速度快,磁芯存儲器是體積大,容量小,速度慢。半導體存儲器用半導體的通斷狀態來記錄數據,體積可以做的很小,容量卻很大。磁芯存儲器是華裔王安於1948年發明的,磁芯的英文名稱就是core,磁芯存儲器就叫作core memory。磁芯存儲器用磁芯的磁極方向來存儲數據,體積大,速度慢,容量小,性能遠不上半導體存儲器,所以逐步被淘汰,現在很少使用。