存儲的發展歷史和趨勢
⑴ 內存儲器的發展歷程
對於用過386機器的人來說,30pin的內存,我想在很多人的腦海里,一定或多或少的還留有一絲印象,這一次我們特意收集的7根30pin的內存條,並拍成圖片,怎麼樣看了以後,是不是有一種久違的感覺呀!
30pin 反面 30pin 正面
下面是一些常見內存參數的介紹:
bit 比特,內存中最小單位,也叫「位」。它只有兩個狀態分別以0和1表示
byte位元組,8個連續的比特叫做一個位元組。
ns(nanosecond)
納秒,是一秒的10億分之一。內存讀寫速度的單位,其前面數字越小表示速度越快。
72pin正面 72pin反面
72pin的內存,可以說是計算機發展史的一個經典,也正因為它的廉價,以及速度上大幅度的提升,為電腦的普及,提供了堅實的基礎。由於用的人比較多,目前在市場上還可以買得到。
SIMM(Single In-line Memory Moles)
單邊接觸內存模組。是5X86及其較早的PC中常採用的內存介面方式。在486以前,多採用30針的SIMM介面,而在Pentuim中更多的是72針的SIMM介面,或者與DIMM介面類型並存。人們通常把72線的SIMM類型內存模組直接稱為72線內存。
ECC(Error Checking and Correcting)
錯誤檢查和糾正。與奇偶校驗類似,它不但能檢測到錯誤的地方,還可以糾正絕大多數錯誤。它也是在原來的數據位上外加位來實現的,這些額外的位是用來重建錯誤數據的。只有經過內存的糾錯後,計算機操作指令才可以繼續執行。當然在糾錯是系統的性能有著明顯的降低。
EDO DRAM(Extended Data Output RAM)
擴展數據輸出內存。是Micron公司的專利技術。有72線和168線之分、5V電壓、帶寬32bit、基本速度40ns以上。傳統的DRAM和FPM DRAM在存取每一bit數據時必須輸出行地址和列地址並使其穩定一段時間後,然後才能讀寫有效的數據,而下一個bit的地址必須等待這次讀寫操作完成才能輸出。EDO DRAM不必等待資料的讀寫操作是否完成,只要規定的有效時間一到就可以准備輸出下一個地址,由此縮短了存取時間,效率比FPM DRAM高20%—30%。具有較高的性/價比,因為它的存取速度比FPM DRAM快15%,而價格才高出5%。因此,成為中、低檔Pentium級別主板的標准內存。
DIMM(Dual In-line Memory Moles)
雙邊接觸內存模組。也就是說這種類型介面內存的插板兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,由於是雙邊的,所以共有84×2=168線接觸,所以人們常把這種內存稱為168線內存。
PC133
SDRAM(Synchronous Burst RAM)
同步突發內存。是168線、3.3V電壓、帶寬64bit、速度可達6ns。是雙存儲體結構,也就是有兩個儲存陣列,一個被CPU讀取數據的時候,另一個已經做好被讀取數據的准備,兩者相互自動切換,使得存取效率成倍提高。並且將RAM與CPU以相同時鍾頻率控制,使RAM與CPU外頻同步,取消等待時間,所以其傳輸速率比EDO DRAM快了13%。SDRAM採用了多體(Bank)存儲器結構和突發模式,能傳輸一整數據而不是一段數據。
SDRAM ECC 伺服器專用內存
RDRAM(Rambus DRAM)
是美國RAMBUS公司在RAMBUSCHANNEL技術基礎上研製的一種存儲器。用於數據存儲的字長為16位,傳輸率極速指標有望達到600MHz。以管道存儲結構支持交叉存取同時執行四條指令,單從封裝形式上看,與DRAM沒有什麼不同,但在發熱量方面與100MHz的SDRAM大致相當。因為它的圖形加速性能是EDO DRAM的3-10倍,所以目前主要應用於高檔顯卡上做顯示內存。
Direct RDRAM
是RDRAM的擴展,它使用了同樣的RSL,但介面寬度達到16位,頻率達到800MHz,效率更高。單個傳輸率可達到1.6GB/s,兩個的傳輸率可達到3.2GB/s。
點評:
30pin和72pin的內存,早已退出市場,現在市場上主流的內存,是SDRAM,而SDRAM的價格越降越底,對於商家和廠家而言,利潤空間已縮到了極限,賠錢的買賣,有誰願意去做了?再者也沒有必要,畢竟廠家或商家們總是在朝著向「錢」的方向發展。
隨著 INTEL和 AMD兩大公司 CPU生產飛速發展,以及各大板卡廠家的支持,RAMBUS 和 DDRAM 也得到了更快的發展和普及,究竟哪一款會成為主流,哪一款更適合用戶,市場終究會證明這一切的。
機存取存儲器是電腦的記憶部件,也被認為是反映集成電路工藝水平的部件。各種存儲器中以動態存儲器(DRAM)的存儲容量為最大,使用最為普及,幾十年間它的存儲量擴大了幾千倍,存取數據的速度提高40多倍。存儲器的集成度的提高是靠不斷縮小器件尺寸達到的。尺寸的縮小,對集成電路的設計和製造技術提出了極為苛刻的要求,可以說是只有一代新工藝的突破,才有一代集成電路。
動態讀寫存儲器DRAM(Dynamic Random Access MeMory)是利用MOS存儲單元分布電容上的電荷來存儲數據位,由於電容電荷會泄漏,為了保持信息不丟失,DRAM需要不斷周期性地對其刷新。由於這種結構的存儲單元所需要的MOS管較少,因此DRAM的集成度高、功耗也小,同時每位的價格最低。DRAM一般都用於大容量系統中。DRAM的發展方向有兩個,一是高集成度、大容量、低成本,二是高速度、專用化。
從1970年Intel公司推出第一塊1K DRAM晶元後,其存儲容量基本上是按每三年翻兩番的速度發展。1995年12月韓國三星公司率先宣布利用0.16μm工藝研製成功集成度達10億以上的1000M位的高速(3lns)同步DRAM。這個領域的競爭非常激烈,為了解決巨額投資和共擔市場風險問題,世界范圍內的各大半導體廠商紛紛聯合,已形成若干合作開發的集團格局。
1996年市場上主推的是4M位和16M位DRAM晶元,1997年以16M位為主,1998年64M位大量上市。64M DRAM的市場佔有率達52%;16M DRAM的市場佔有率為45%。1999年64M DRAM市場佔有率已提高到78%,16M DRAM佔1%。128M DRAM已經普及,明年將出現256M DRAM。
高性能RISC微處理器的時鍾已達到100MHz~700MHz,這種情況下,處理器對存儲器的帶寬要求越來越高。為了適應高速CPU構成高性能系統的需要,DRAM技術在不斷發展。在市場需求的驅動下,出現了一系列新型結構的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。為了提高動態讀寫存儲器訪問速度而採用不同技術實現的DRAM有:
(1) 快速頁面方式FPM DRAM
快速頁面方式FPM(Fast Page Mode)DRAM已經成為一種標准形式。一般DRAM存儲單元的讀寫是先選擇行地址,再選擇列地址,事實上,在大多數情況下,下一個所需要的數據在當前所讀取數據的下一個單元,即其地址是在同一行的下一列,FPM DRAM可以通過保持同一個行地址來選擇不同的列地址實現存儲器的連續訪問。減少了建立行地址的延時時間從而提高連續數據訪問的速度。但是當時鍾頻率高於33MHz時,由於沒有足夠的充電保持時間,將會使讀出的數據不可靠。
(2) 擴展數據輸出動態讀寫存儲器EDO DRAM
在FPM技術的基礎上發展起來的擴展數據輸出動態讀寫存儲器EDODRAM(Extended Data Out DRAM),是在RAM的輸出端加一組鎖存器構成二級內存輸出緩沖單元,用以存儲數據並一直保持到數據被可靠地讀取時為止,這樣就擴展了數據輸出的有效時間。EDODRAM可以在50MHz時鍾下穩定地工作。
由於只要在原DRAM的基礎上集成成本提高並不多的EDO邏輯電路,就可以比較有效地提高動態讀寫存儲器的性能,所以在此之前,EDO DRAM曾成為動態讀寫存儲器設計的主流技術和基本形式。
(3) 突發方式EDO DRAM
在EDO DRAM存儲器的基礎上,又發展了一種可以提供更高有效帶寬的動態讀寫存儲器突發方式EDO DRAM(Burst EDO DRAM)。這種存儲器可以對可能所需的4個數據地址進行預測並自動地預先形成,它把可以穩定工作的頻率提高到66MHz。
(4) 同步動態讀寫存儲器SDRAM
SDRAM(Synchronous DRAM)是通過同步時鍾對控制介面的操作和安排片內隔行突發方式地址發生器來提高存儲器的性能。它僅需要一個首地址就可以對一個存儲塊進行訪問。所有的輸入采樣如輸出有效都在同一個系統時鍾的上升沿。所使用的與CPU同步的時鍾頻率可以高達66MHz~100MHz。它比一般DRAM增加一個可編程方式寄存器。採用SDRAM可大大改善內存條的速度和性能,系統設計者可根據處理器要求,靈活地採用交錯或順序脈沖。
Infineon Technologies(原Siemens半導體)今年已批量供應256Mit SDRAM。其SDRAM用0.2μm技術生產,在100MHz的時鍾頻率下輸出時間為10ns。
(5) 帶有高速緩存的動態讀寫存儲器CDRAM
CDRAM(Cached DRAM)是日本三菱電氣公司開發的專有技術,1992年推出樣品,是通過在DRAM晶元,集成一定數量的高速SRAM作為高速緩沖存儲器Cache和同步控制介面,來提高存儲器的性能。這種晶元用單一+3.3V電源,低壓TTL輸入輸出電平。目前三菱公司可以提供的CDRAM為4Mb和16Mb,其片內Cache為16KB,與128位內部匯流排配合工作,可以實現100MHz的數據訪問。流水線式存取時間為7ns。
(6) 增強型動態讀寫存儲器EDRAM(Enhanced DRAM)
由Ramtron跨國公司推出的帶有高速緩沖存儲器的DRAM產品稱作增強型動態讀寫存儲器EDRAM(Enhanced DRAM),它採用非同步操作方式,單一+5V工作電源,CMOS或TTL輸入輸出電平。由於採用一種改進的DRAM 0.76μm CMOS工藝和可以減小寄生電容和提高晶體管增益的結構技術,其性能大大提高,行訪問時間為35ns,讀/寫訪問時間可以提高到65ns,頁面寫入周期時間為15ns。EDRAM還在片內DRAM存儲矩陣的列解碼器上集成了2K位15ns的靜態RAM高速緩沖存儲器Cache,和後寫寄存器以及另外的控制線,並允許SRAM Cache和DRAM獨立操作。每次可以對一行數據進行高速緩沖。它可以象標準的DRAM對任一個存儲單元用頁面或靜態列訪問模式進行操作,訪問時間只有15ns。當Cache未命中時,EDRAM就把新的一行載入到Cache中,並把選擇的存儲單元數據輸出,這需要花35ns。這種存儲器的突發數據率可以達到267Mbytes/s。
(7) RDRAM(Rambus DRAM)
Rambus DRAM是Rambus公司利用本身研製的一種獨特的介面技術代替頁面方式結構的一種新型動態讀寫存儲器。這種介面在處理機與DRAM之間使用了一種特殊的9位低壓負載發送線,用250MHz同步時鍾工作,位元組寬度地址與數據復用的串列匯流排介面。這種介面又稱作Rambus通道,這種通道嵌入到DRAM中就構成Rambus DRAM,它還可以嵌入到用戶定製的邏輯晶元或微處理機中。它通過使用250MHz時鍾的兩個邊沿可以使突發數據傳輸率達到500MHz。在採用Rambus通道的系統中每個晶元內部都有它自己的控制器,用來處理地址解碼和面頁高速緩存管理。由此一片存儲器子系統的容量可達512K位元組,並含有一個匯流排控制器。不同容量的存儲器有相同的引腳並連接在同一組匯流排上。Rambus公司開發了這種新型結構的DRAM,但是它本身並不生產,而是通過發放許可證的方式轉讓它的技術,已經得到生產許可的半導體公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。
被業界看好的下一代新型DRAM有三種:雙數據傳輸率同步動態讀寫存儲器(DDR SDRAM)、同步鏈動態讀寫存儲器(SLDRAM)和Rambus介面DRAM(RDRAM)。
(1) DDR DRAM(Double Data Rate DRAM)
在同步動態讀寫存儲器SDRAM的基礎上,採用延時鎖定環(Delay-locked Loop)技術提供數據選通信號對數據進行精確定位,在時鍾脈沖的上升沿和下降沿都可傳輸數據(而不是第一代SDRAM僅在時鍾脈沖的下降沿傳輸數據),這樣就在不提高時鍾頻率的情況下,使數據傳輸率提高一倍,故稱作雙數據傳輸率(DDR)DRAM,它實際上是第二代SDRAM。由於DDR DRAM需要新的高速時鍾同步電路和符合JEDEC標準的存儲器模塊,所以主板和晶元組的成本較高,一般只能用於高檔伺服器和工作站上,其價格在中低檔PC機上可能難以接受。
(2) SLDRAM(Synchnonous Link DRAM)
這是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等業界大公司聯合制定的一個開放性標准,委託Mosaid Technologies公司設計,所以SLDRAM是一種原本最有希望成為高速DRAM開放性工業標準的動態讀寫存儲器。它是一種在原DDR DRAM基礎上發展的一種高速動態讀寫存儲器。它具有與DRDRAM相同的高數據傳輸率,但是它比其工作頻率要低;另外生產這種存儲器不需要支付專利使用費,使得製造成本較低,所以這種存儲器應該具有市場競爭優勢。但是由於SLDRAM聯盟是一個鬆散的聯合體,眾多成員之間難以協調一致,在研究經費投入上不能達成一致意見,加上Intel公司不支持這種標准,所以這種動態存儲器反而難以形成氣候,敵不過Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用於通信和消費類電子產品,高檔PC和伺服器。
(3) DRDRAM(Direct Rambus DRAM)
從1996年開始,Rambus公司就在Intel公司的支持下制定新一代RDRAM標准,這就是DRDRAM(Direct RDRAM)。這是一種基於協議的DRAM,與傳統DRAM不同的是其引腳定義會隨命令而變,同一組引腳線可以被定義成地址,也可以被定義成控制線。其引腳數僅為正常DRAM的三分之一。當需要擴展晶元容量時,只需要改變命令,不需要增加硬體引腳。這種晶元可以支持400MHz外頻,再利用上升沿和下降沿兩次傳輸數據,可以使數據傳輸率達到800MHz。同時通過把數據輸出通道從8位擴展成16位,這樣在100MHz時就可以使最大數據輸出率達1.6Gb/s。東芝公司在購買了Rambus公司的高速傳輸介面技術專利後,於1998年9月首先推出72Mb的RDRAM,其中64Mb是數據存儲器,另外8Mb用於糾錯校驗,由此大大提高了數據讀寫可靠性。
Intel公司辦排眾議,堅定地推舉DRDRAM作為下一代高速內存的標准,目前在Intel公司對Micro、Toshiba和Samsung等公司組建DRDRAM的生產線和測試線投入資金。其他眾多廠商也在努力與其抗爭,最近AMD宣布至少今年推出的K7微處理器都不打算採用Rambus DRAM;據說IBM正在考慮放棄對Rambus的支持。當前市場上同樣是64Mb的DRAM,RDRAM就要比其他標準的貴45美元。
由此可見存儲器的發展動向是:大容量化,高速化, 多品種、多功能化,低電壓、低功耗化。
存儲器的工藝發展中有以下趨勢:CHMOS工藝代替NMOS工藝以降低功耗;縮小器件尺寸,外圍電路仍採用ECL結構以提高存取速度同時提高集成度;存儲電容從平面HI-C改為深溝式,保證尺寸減少後的電荷存儲量,以提高可靠性;電路設計中簡化外圍電路結構,注意降低雜訊,運用冗餘技術以提高質量和成品率;工藝中採用了多種新技術;使DRAM的存儲容量穩步上升,為今後繼續開發大容量的新電路奠定基礎。
從電子計算機中的處理器和存儲器可以看出ULSI前進的步伐和幾十年間的巨大變化。
⑵ 信息存儲技術的信息存儲技術的發展趨勢
1.評價存儲技術的指標
評價存儲技術的指標常包括以下幾種:存儲密度、存取時間、存儲成本、信息更新的難易、可靠性、壽命、消耗功率等。
其中有幾項指標是互為相反的,沒有一種存儲技術能同時滿足所有要求。因此,無論是紙印刷存儲,還是縮微存儲,磁存儲,半導體存儲,光碟存儲都各自具備別的技術不能替代的優點。因此它們將在較長時期內並存,互為補充。
2.縮微存儲、磁存儲和光碟存儲技術特點的比較
1)從存儲容量、存儲密度來看,光碟存儲佔有絕對優勢。
2)從存取時間來看,磁存儲佔有優勢,光碟存取的時間則較長,縮微存儲的存取時間則不可比。
3)從信息更新的難易程度來講,磁存儲非常容易,而光碟存儲的信息更新技術正在研製過程當中,縮微存儲則不能進行信息的更新。
4)從存儲信息的可靠性比較可以看出,縮微存儲技術佔有絕對優勢,它的誤碼率為0,且保存期限最長。
5)縮微存儲技術和磁存儲技術比較成熟,縮微存儲技術具有一次性投資較低的特點。
6)從信息存儲技術的發展來看,光碟存儲技術最有希望,隨著光碟技術的改進和成熟,它的存取速度將進一步加快,成本將會進—步降低,光碟存儲技術將有一個飛躍的發展。
3.信息存儲技術的未來
由上面的特點比較我們可以得出結論:無論是紙印刷文獻的存儲,還是縮微存儲、磁存儲、光碟存儲,它們都各自具備別的技術不能替代的長處,因此,它們將在較長時期內並存,互為補充。這是信息存儲技術的一個發展趨勢。
信息存儲技術的另一發展趨勢是各項信息存儲技術的結合發展:
1)磁存儲與光存儲的結合——磁光存儲技術。這是一種利用激光在磁光存儲材料上進行信息寫入和讀出的技術。磁光存儲技術結合了磁存儲與光碟存儲的優點,存儲密度高,存儲容量大,而且存取時間短。
2)採用縮微片和光碟兩種存儲媒質的復合系統。在隨錄隨用、檢索速度、影像遠距離傳送等方面,光碟優於縮微片,而在輸入速度、復制發行、存儲壽命、法律依據陸方面,縮微片又優於光碟。日本的佳能和富士公司先後推出一種採用縮微片和光碟兩種存儲媒質的所謂復合系統。採用復合系統的另一個優點是,原來已擁有大量縮微片的舊系統仍可繼續使用,並能順利地向新系統過渡。
3)「三合一」的存儲系統,即將縮微、磁和光碟存儲技術結合在一起的復合系統。柯達公司正在研究這種系統。
信息存儲技術將有一個重新的比例分配是其發展的又一必然趨勢,為了實現我國信息工作的現代化,我們必須採取得力的措施,來積極推動信息存儲技術的這種轉化。信息存儲技術比例上的重新分配,也是為了更好地發揮各信息存儲技術的特長,揚長避短。所謂「重新的比例分配」是:
1)傳統的紙印刷文獻,由於存儲空間、存儲條件等限制,一些利用率較低的印刷型文獻將被縮微存儲代替。
2)對於形像資料,為了保持圖像的色彩,最好用光碟存儲。當然也可以用彩色縮微攝影保存,但其效果並不十分理想。
3)為了充分利用光碟處理計算機信息的能力,可用光碟代替磁碟存儲信息機構的書目信息和情報檢索信息。通過光碟可以快速向用戶提供檢索服務,也可利用電子傳輸通信為遠程終端提供書目信息。
4)存儲計算機信息,過去都擬依靠COM技術,隨著光碟技術的發展,COM技術可能被光碟代替。
5)根據光碟存儲信息壽命短,但檢索功能強及檢索速度高的特點,可考慮將檢索頻率高的科技期刊、科技報告、標准和法律文獻及一些詞典工具書等存入光碟。根據科學信息老化規律,科技文獻的引用期平均也只有10年左右,正好與光碟保存信息的壽命相當。
從長遠來看,在信息存儲技術領域內,今後還有大量的工作可做。有人估計,利用生物蛋白自我繁殖的功能,可以製造出極大容量的生物存儲器;還可藉助生物集成電路把計算機與人腦(一個極大容量的生物信息存儲器)聯系起來,形成新的人機系統。
⑶ 信息存儲技術的背景 應用 發展以及趨勢
信息存儲技術作為信息技術的核心之一,一直伴隨著、同時推動著IT業各方面技術的協同發展,是當今IT領域中少數發展最為迅速的熱點之一。紙的發明記載了人類的歷史和文明,現代信息存儲技術則大大超越了紙張記錄的含義。21世紀是數字化和多媒體化的信息時代,現代信息社會和經濟的發展,所產生的信息量每年以指數方式上升,出現了信息爆炸的態勢。據UC Berkley 2001年公布的數據顯示,未來3年內所產生的數據將超過過去4萬年中產生數據的總和,而且93%的新生成的信息為數字形式。當上世紀50年代計算機技術初現時,存儲容量還只是以千位位元組計…http://www.cnki.com.cn/Article/CJFD2006-CXJL200605012.htm
⑷ 未來 信息存儲技術 的發展趨勢,大概哪些方向就行,如果回答詳細的話,可以提高懸賞
目前炒得比較火的概念是:雲存儲
IT行業的熱門是雲,那麼存儲行業作為IT行業的子類也必須要順應趨勢。
雲存儲的概念網上有,我就不追述了。
其實存儲作為底層的核心數據存放設備,需要支持各種上層的業務,所以需要關注相關行業的新技術和新領域,存儲現在最大的性能瓶頸在於磁碟,等SSD磁碟普及後(包括價格和容量),存儲的勢頭將更加迅猛。
⑸ 雲存儲的發展趨勢
雲存儲已經成為未來存儲發展的一種趨勢。但隨著雲存儲技術的發展,各類搜索、應用技術和雲存儲相結合的應用,還需從安全性、便攜性及數據訪問等角度進行改進。(1)安全性從雲計算誕生,安全性一直是企業實施雲計算首要考慮的問題之一。同樣在雲存儲方面,安全仍是首要考慮的問題,對於想要進行雲存儲的客戶來說,安全性通常是首要的商業考慮和技術考慮。但是許多用戶對雲存儲的安全要求甚至高於它們自己的架構所能提供的安全水平。即便如此,面對如此高的不現實的安全要求,許多大型、可信賴的雲存儲廠商也在努力滿足它們的要求,構建比多數企業數據中心安全得多的數據中心。用戶可以發現,雲存儲具有更少的安全漏洞和更高的安全環節,雲存儲所能提供的安全性水平要比用戶自己的數據中心所能提供的安全水平還要高。(2)便攜性一些用戶在託管存儲的時候還要考慮數據的便攜性。一般情況下這是有保證的,一些大型服務提供商所提供的解決方案承諾其數據便攜性可媲美最好的傳統本地存儲。有的雲存儲結合了強大的便攜功能,可以將整個數據集傳送到你所選擇的任何媒介,甚至是專門的存儲設備。(3)性能和可用性過去的一些託管存儲和遠程存儲總是存在著延遲時間過長的問題。同樣地,互聯網本身的特性就嚴重威脅服務的可用性。最新一代雲存儲有突破性的成就,體現在客戶端或本地設備高速緩存上,將經常使用的數據保持在本地,從而有效地緩解互聯網延遲問題。通過本地高速緩存,即使面臨最嚴重的網路中斷,這些設備也可以緩解延遲性問題。這些設備還可以讓經常使用的數據像本地存儲那樣快速反應。通過一個本地NAS網關,雲存儲甚至可以模仿終端NAS設備的可用性、性能和可視性,同時將數據予以遠程保護。隨著雲存儲技術的不斷發展,各廠商仍將繼續努力實現容量優化和WAN(廣域網)優化,從而盡量減少數據傳輸的延遲性。(4)數據訪問現有對雲存儲技術的疑慮還在於,如果執行大規模數據請求或數據恢復操作,那麼雲存儲是否可提供足夠的訪問性。在未來的技術條件下,此點大可不必擔心,現有的廠商可以將大量數據傳輸到任何類型的媒介,可將數據直接傳送給企業,且其速度之快相當於復制、粘貼操作。另外,雲存儲廠商還可以提供一套組件,在完全本地化的系統上模仿雲地址,讓本地NAS網關設備繼續正常運行而無需重新設置。未來,如果大型廠商構建了更多的地區性設施,那麼數據傳輸將更加迅捷。如此一來,即便是客戶本地數據發生了災難性的損失,雲存儲廠商也可以將數據重新快速傳輸給客戶數據中心。 雲計算和物聯網之間的關系可以用一個形象的比喻來說明:「雲計算」是「互聯網中的神經系統的雛形,「物聯網」是「互聯網」正在出現的末梢神經系統的萌芽。
「物聯網就是物物相連的互聯網」。這有兩層意思:第一,物聯網的核心和基礎仍然是互聯網,是在互聯網基礎上的延伸和擴展的網路;第二,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。
物聯網的兩種業務模式:
1.MAI(M2M Application Integration), 內部MaaS;
2.MaaS(M2M As A Service), MMO, Multi-Tenants(多租戶模型)。
隨著物聯網業務量的增加,對數據存儲和計算量的需求將帶來對「雲計算」能力的要求:
1.雲計算:從計算中心到數據中心在物聯網的初級階段,PoP即可滿足需求;
2.在物聯網高級階段,可能出現MVNO/MMO營運商(國外已存在多年),需要虛擬化雲計算技術,SOA等技術的結合實現互聯網的泛在服務:TaaS (everyTHING As A Service)。 雲安全(Cloud Security)是一個從「雲計算」演變而來的新名詞。雲安全的策略構想是:使用者越多,每個使用者就越安全,因為如此龐大的用戶群,足以覆蓋互聯網的每個角落,只要某個網站被掛馬或某個新木馬病毒出現,就會立刻被截獲。
「雲安全」通過網狀的大量客戶端對網路中軟體行為的異常監測,獲取互聯網中木馬、惡意程序的最新信息,推送到Server端進行自動分析和處理,再把病毒和木馬的解決方案分發到每一個客戶端。 私有雲(Private Cloud)是將雲基礎設施與軟硬體資源創建在防火牆內,以供機構或企業內各部門共享數據中心內的資源。 創建私有雲,除了硬體資源外,一般還有雲設備(IaaS)軟體;現時商業軟體有VMware的 vSphere 和Platform Computing 的ISF, 開放源代碼的雲設備軟體主要有Eucalyptus和OpenStack。至2013年可以提供私有雲的平台有:Eucalyptus、3A Cloud、minicloud安全辦公私有雲、聯想網盤和OATOS企業網盤等。
雲創存儲推出minicloud安全辦公私有雲,用最少的成本為企業部署雲存儲以及企業辦公應用軟體,為企業打造安全的辦公環境。在滿足企業辦公需求的基礎上,大幅度降低了企業IT建設的門檻與風險,並同時全面保障企業數據安全。
私有雲計算同樣包含雲硬體、雲平台、雲服務三個層次。不同的是,雲硬體是用戶自己的個人電腦或伺服器,而非雲計算廠商的數據中心。雲計算廠商構建數據中心的目的是為千百萬用戶提供公共雲服務,因此需要擁有幾十上百萬台伺服器。私有雲計算,對個人來說只服務於親朋好友,對企業來說只服務於本企業員工以及本企業的客戶和供應商,因此個人或企業自己的個人電腦或伺服器已經足夠用來提供雲服務。 雲會議是基於雲計算技術的一種高效、便捷、低成本的會議形式。使用者只需要通過互聯網界面,進行簡單易用的操作,便可快速高效地與全球各地團隊及客戶同步分享語音、數據文件及視頻,而會議中數據的傳輸、處理等復雜技術由雲會議服務商幫助使用者進行操作。
目前國內雲會議主要集中在以SAAS(軟體即服務)模式為主體的服務內容,包括電話、網路、視頻等服務形式,基於雲計算的視頻會議就叫雲會議。雲會議是視頻會議與雲計算的完美結合,帶來了最便捷的遠程會議體驗。及時語移動雲電話會議,是雲計算技術與移動互聯網技術的完美融合,通過移動終端進行簡單的操作,提供隨時隨地高效地召集和管理會議。 雲社交(CloudSocial)是一種物聯網、雲計算和移動互聯網交互應用的虛擬社交應用模式,以建立著名的「資源分享關系圖譜」為目的,進而開展網路社交,雲社交的主要特徵,就是把大量的社會資源統一整合和評測,構成一個資源有效池向用戶按需提供服務。參與分享的用戶越多,能夠創造的利用價值就越大。
雲計算系統
⑹ 簡述儲存設備的發展趨勢
市場由國外企業壟斷,國內廠商奮力追趕
存儲晶元是一個高度壟斷的市場,三星、SK海力士、美光,合計占據全球DRAM市場95%左右的份額,NAND
Flash經過幾十年的發展,已經形成了由三星、鎧俠、西部數據、美光、SK海力士、英特爾六大原廠組成的穩定市場格局。
從中國存儲晶元行業競爭格局來看,市場主要由國外存儲晶元巨頭領導,細分領域也落後於國外及台灣廠商(如NOR
Flash的旺宏/華邦等),但近年來國內廠商奮力追趕,已在部分領域實現突破,逐步縮小與國外原廠的差距。
其中,兆易創新位列NOR
Flash市場前三,聚辰股份在EEPROM晶元領域市佔率全球第三,長江存儲128層3DNAND存儲晶元,直接跳過96層,加速趕超國外廠商先進技術。值得注意的是,兆易創新集團旗下還包含長鑫存儲(CXMT),意味著兆易創新集團同時握有中國NOR
Flash與DRAM的自主研發能力,扮演中國半導體發展的重要角色。
——更多數據來請參考前瞻產業研究院《中國存儲晶元行業市場需求與投資前景預測》。
⑺ GIS發展歷史與發展趨勢
經過了多年的發展,各行業對 GIS 的認識和掌握程度日益提高,GIS 本身的技術水平和軟硬體設施也日臻完善,其綜合性和先進性也得到充分體現,這使得 GIS 在資源環境和社會經濟等領域得到了廣泛應用,發揮了重大的作用。目前,GIS 應用領域已包括測繪、政府、建築、地質、環保、農業、城鄉規劃、災害監測等各個部門。
1. GIS 發展歷史
回顧 GIS 發展的歷史,可以歸納為三個發展階段。20 世紀 50 年代中期到 80 年代後期,是 GIS 的開發時期,該階段的 GIS 軟體是以地圖為基礎進行單機、集中式處理,具有數據處理系統和管理信息系統初期設計的主要特點。80 年代末到 90 年代初是 GIS 第二個發展階段,這一階段 GIS 在快速發展的計算機硬體和軟體支撐下得到了迅速發展,商品化GIS 軟體正式進入傳統的軟體市場,並在各行業中得到廣泛應用。90 年代中後期以來,是GIS 的第三個重要的發展歷史時期,此時 GIS 普遍採用了面向對象的軟體技術,極大提高了 GIS 的二次開發能力,實現了空間數據和屬性數據的一體化存儲。在此基礎上還逐漸形成了 「3S」技術集成,在一定程度上實現了矢量數據、圖像數據一體化存儲、疊加和矢量-柵格數據的相互轉化。
在地學應用方面,GIS 發展主要經歷了以下幾個階段: 20 世紀 70 年代末,一些數學地質專家、遙感地質專家、計算機地學處理專家積極開展了這方面應用工作; 80 年代中後期,GIS 的地學應用特別是礦產資源評價預測處於實驗成熟期; 進入 90 年代,GIS 在地學和其他領域得到空前廣泛應用; 90 年代初期,美國礦產資源評價預測廣泛應用了包括GIS 在內的計算機信息處理技術,90 年代中後期,GIS 在礦產預測方面採用了多種數學模型,如模糊邏輯法、代數法、神經網路法,這些工作極大地推動和豐富了地學研究與 GIS的結合。
2. GIS 未來發展趨勢
從系統角度看,在未來的幾十年內,GIS 將向著數據標准化 ( Interoperable GIS) 、數據多維化 ( 3D/4D GIS) 、系統集成化 ( Component GIS) 、平台網路化 ( Web GIS) 和應用社會化 ( 數字地球,DE) 的方向發展。
互操作地理信息系統 ( Interoperable GIS) 是 GIS 系統集成平台,它實現在異構環境下多個地理信息的系統或其應用系統之間的互相通信和協作,以完成某一特定任務。
三維或四維地理信息系統 ( 3D/4D GIS) 是從以往靜態的二維 GIS 模型向三維、四維、甚至多維的動態模型轉換,從而實現利用 GIS 表達世界真三維空間數據場。目前 3DGIS 已開始應用於許多行業中,如礦山三維 GIS 的構建,地質構造模型的三維可視化,城市三維景觀製作,三維可視化在固體礦產中的應用,三維可視化在地震解釋中的應用,三維 GIS 在地質災害中的應用,三維 GIS 在數字區調中的應用等。
Com GIS ( Component GIS) 是面向對象和構件技術的地理信息系統,是把 GIS 的功能模塊劃分為多個控制項,每個控制項完成不同的功能,通過可視化的軟體開發工具集成起來,形成最終 GIS 應用。
Web GIS 是 Internet 和 WWW 技術應用於 GIS 開發的產物,是實現 GIS 互操作的一條最佳解決途徑。從 Internet 的任意節點,用戶都可以瀏覽 Web GIS 站點中的空間數據,製作專題圖,進行各種空間信息檢索和空間分析。隨著 Internet 的飛速發展,Web GIS 的發展更加廣闊,它改變了 GIS 數據及應用的訪問和傳輸方式,使 GIS 真正變成了大眾使用的工具。
數字地球 ( DE) 是對真實地球及其相關現象統一性的數字化重現和認識,其核心思想是用數字化手段統一處理地球問題和最大限度地利用信息資源。數字地球是 GIS 的延伸,建立數字地球的核心技術包括 GIS 與資料庫、遙感、遙測、信息技術等。遙感、遙測技術用來完成數據採集、處理和識別,GIS 和資料庫技術用於完成數據存儲、檢索、集成、融合、綜合和分析,從而完成數字地球的核心功能,光纜、衛星通信技術以及計算機網路等技術則完成海量空間數據的傳輸任務。
⑻ 硬碟的發展史
1、1956年,IBM的IBM 350 RAMAC是現代硬碟的雛形,它相當於兩個冰箱的體積,不過其儲存容量只有5MB。1973年IBM 3340問世,它擁有「溫徹斯特」這個綽號,來源於他兩個30MB的儲存單元,恰是當時出名的「溫徹斯特來福槍」的口徑和填彈量。至此,硬碟的基本架構被確立。
2、1980年,兩位前IBM員工創立的公司開發出5.25英寸規格的5MB硬碟,這是首款面向台式機的產品,而該公司正是希捷(SEAGATE)公司。
3、80年代末,IBM公司推出MR(Magneto Resistive磁阻)技術令磁頭靈敏度大大提升,使碟片的儲存密度較之前的20Mbpsi(bit/每平方英寸)提高了數十倍,該技術為硬碟容量的巨大提升奠定了基礎。1991年,IBM應用該技術推出了首款3.5英寸的1GB硬碟。
4、1970年到1991年,硬碟碟片的儲存密度以每年25%~30%的速度增長;從1991年開始增長到60%~80%;至今,速度提升到100%甚至是200%,從1997年開始的驚人速度提升得益於IBM的GMR(Giant Magneto Resistive,巨磁阻)技術,它使磁頭靈敏度進一步提升,進而提高了儲存密度。
5、1995年,為了配合Intel的LX晶元組,昆騰(Quantum)與Intel攜手發布UDMA 33介面——EIDE標准將原來介面數據傳輸率從16.6MB/s提升到了33MB/s 同年,希捷開發出液態軸承(FDB,Fluid Dynamic Bearing)馬達。所謂的FDB就是指將陀螺儀上的技術引進到硬碟生產中,用厚度相當於頭發直徑十分之一的油膜取代金屬軸承,減輕了硬碟噪音與發熱量 。
6、1996年,希捷收購康諾(Conner Peripherals)。
7、1998年2月,UDMA 66規格面世 。
8、2000年10月,邁拓(Maxtor)收購昆騰。
9、2003年1月,日立宣布完成20.5億美元的收購IBM硬碟事業部計劃,並成立日立環球儲存科技公司(Hitachi Global Storage Technologies, Hitachi GST)。
10、2005年日立環儲和希捷都宣布了將開始大量採用磁碟垂直寫入技術(perpendicular recording),該原理是將平行於碟片的磁場方向改變為垂直(90度),更充分地利用的儲存空間。
11、2005年12月21日, 硬碟製造商希捷宣布收購邁拓(Maxtor)。
12、2007年1月,日立環球儲存科技宣布將會發售全球首隻1Terabyte的硬碟,比原先的預定時間遲了一年多。硬碟的售價為399美元,平均每美元可以購得2.75GB硬碟空間。
13、2007年11月,Maxtor硬碟出廠的預先格式化的硬碟,被發現已植入會盜取在線游戲的帳號與密碼的木馬。
未來的發展趨勢:
希捷存儲新技術:2009年出2500G硬碟。
硬碟記錄密度越大就可以實現越大的磁碟容量,希捷最近發布的160GB 5400rpm 2.5英寸垂直紀錄筆記本硬碟的紀錄密度是每平方英寸135Gbits,東芝最新展示的2.5英寸硬碟每平方英寸紀錄密度是188Gbits,而在加州矽谷的IDEMA DiSKON展會上,希捷展示了1種磁記錄設備,每平方英寸可以紀錄421Gbits數據!
據國外媒體報道,日立日前宣布,將於2010年推出5TB(5120G)硬碟,從而向新興的固態硬碟發起挑戰。 如今,固態硬碟逐漸蠶食傳統硬碟業務, 尤其是在筆記本電腦市場。但是,這並不意味著傳統硬碟將從此退出歷史舞台。
硬碟專家日立的做法是,盡可能提升硬碟的存儲空間。據悉,日立計劃於2010年推出5TB 3.5英寸商用硬碟。該硬碟採用了電流正交平面垂直巨磁阻(CPP-GMR)技術,使每平方英寸的存儲密度達到1TB。
⑼ 移動存儲介質的發展趨勢
趨勢一:各種信息安全技術走向融合
在企業數據安全管理領域,一個最重要的趨勢就是與各種安全技術的集成以及與各種安全產品的整合。移動存儲介質的保密管理已經遠遠超越了設備單點安全的范疇,移動存儲介質泄密防護作為企業信息失泄密防護的重要環節,需要結合企業現有組織結構,並能與現有的企業安全產品相整合,特別是與信息防護和控制系統(IPC)的整合,成為全面信息安全解決方案中的一部分。
一些廠家認識到基於軟、硬體的保密防護的必要性、優點和不足,將單點設備安全和移動存儲介質管理系統結合起來,並推出了軟硬體結合的產品,這類產品的出現是技術融合的產物,它綜合了以上兩類產品的優點,實現了移動存儲介質的數據安全、介質訪問控制,介質使用環境安全、數據擺渡安全等多層次保護,對移動存儲介質進行全生命周期管理。這類產品是迄今為止最全面的移動存儲介質保密管理方案。
趨勢二:基於安全晶元的驗證和加密被越來越多的產品所採用
隨著安全移動存儲設備應用環境的復雜化,簡單地依靠桌面操作系統的單向認證方式,無法抵擋假冒身份,數據攔截等惡意的竊密手段。基於安全晶元的身份認證方式,將大大提高移動存儲設備數據訪問的安全性。在安全移動存儲設備晶元中運行獨立的COS操作系統,通過USBKEY等安全通道進行身份認證,並由COS完成數據的動態加密。這種認證和保密技術是SIM卡、網上銀行等應用認證技術的拓展。
趨勢三:介質的分級保護成為產品的必要功能
國家保密部門在保密制度上做出了明確規定,對信息系統提出了分密級保護的要求,並規定不同密級實體之間的訪問規則,比如高密級移動存儲介質不能在低密級計算機上使用,高密級電子文件不能存儲在低密級存儲設備上。為滿足保密部門這些要求,密級標識和基於主客體密級標識的訪問控製成為移動存儲介質保密管理的必備功能。
趨勢四:安全數據擺渡成為熱門技術
傳統的數據擺渡威脅來自於移動存儲介質在內外網之間的交叉使用。近幾年,病毒(木馬)通過移動存儲介質擺渡來竊取用戶文件,逐漸成為信息安全的焦點問題,如何有效地鑒別用戶和病毒(木馬)行為,通過有效的手段來保證移動存儲介質在內外部網路之間進行數據擺渡的安全,成為移動存儲介質保密管理越來越重要的課題。
趨勢五:審計跟蹤趨向多維度、立體化
移動存儲介質的便攜性決定它需要把傳統的終端數據審核功能拓展到受控的環境之外,系統審計跟蹤需要從簡單一維空間發展到多維空間,實現基於身份、時間,地點、設備、不同安全模式等多維跟蹤。人員操作審計,終端操作審計、設備使用審計,文件跟蹤審計等構成了立體化的審計跟蹤體系。
易產生的安全隱患
隱患1:使用人員安全意識不高,將帶有與工作有關的資料、單位機密文件的移動存儲介質隨意外借或者麻痹大意而丟失,被他人將移動存儲介質中的資料悉數竊取。
隱患2:移動存儲介質在內外網之間直接交互使用,在接入互聯網等網路時,容易被黑客利用高科技手段獲取有用的個人或者公司信息,從而導致一些重要數據或信息的泄密,造成不必要的個人或者集體損失。
隱患3:由於移動介質的不規范使用,使其作為媒介將病毒從外網帶入內網成為了可能,如銀行內部發生了計算機病毒攻擊內網導致網路癱瘓、系統崩潰和數據丟失。
隱患4:由於移動介質的方便性,常常隨身攜帶,造成移動介質震動或跌落使其受損,從而造成數據和信息的丟失。
隱患5:目前市場假貨很多,大多數都是擴容產品,實際容量與標識有很大的出入,往往使存儲的資料丟失,所以,在購買時,一定要買正品。
⑽ 大數據存儲與應用特點及技術路線分析
大數據存儲與應用特點及技術路線分析
大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
大數據存儲與應用的特點分析
「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。
大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。
(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。
相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。
(2)大數據由於其來源的不同,具有數據多樣性的特點。
所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。
大數據存儲技術路線最典型的共有三種:
第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。
這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。
第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。
第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。
以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨