相變存儲技術
Ⅰ 相變存儲器的技術術語
相
相(phase)是物理化學上的一個概念,它指的是物體的化學性質完全相同,但是物理性質發生變化的不同狀態.例如水有三種不同的狀態,水蒸氣(汽相),液態水(液相)以及固態水(固相)。
相變
物質從一種相變成另外一種相的過程叫做『相變』例如水從液態轉化為固態。

Ⅱ 相變材料與相變儲能技術的內容簡介
《相變材料與相變儲能技術》論述了材料相變的原理和材料熱力學的基礎理論,全面介紹了各種無機、有機、金屬和其他復合相變儲能材料的成分、物理和化學性質、儲熱性能及其對容器的腐蝕與防護;同時論述了相變儲能技術的原理、特點和研究范圍,相變過程傳熱理論,相變傳熱的數值分析,儲能換熱設備及絕熱技術的設計計算基礎和試驗方法。《相變材料與相變儲能技術》還比較詳細地介紹了相變儲能技術在電力調峰、新能源、工業和建築節能及在家用電器工業上的工程應用的原則、方法和實例,既具有深入的理論,又具有實用的相變材料研製和儲能裝置設計計算方法。

Ⅲ 讓國內如此瘋狂的 3D NAND快閃記憶體到底是個啥
什麼是3D NAND快閃記憶體?
從新聞到評測,我們對3D NAND快閃記憶體的報道已經非常多了,首先我們要搞懂什麼是3D NAND快閃記憶體。
從2D NAND到3D NAND就像平房到高樓大廈
我們之前見過的快閃記憶體多屬於Planar NAND平面快閃記憶體,也叫有2D NAND或者直接不提2D的,而3D 快閃記憶體,顧名思義,就是它是立體堆疊的,Intel之前用蓋樓為例介紹了3D NAND,普通NAND是平房,那麼3D NAND就是高樓大廈,建築面積一下子就多起來了,理論上可以無線堆疊。
3D NAND與2D NAND區別
3D NAND快閃記憶體也不再是簡單的平面內存堆棧,這只是其中的一種,還有VC垂直通道、VG垂直柵極等兩種結構。
3D NAND快閃記憶體有什麼優勢?
在回答3D NAND快閃記憶體有什麼優勢的時候,我們先要了解平面NAND遇到什麼問題了——NAND快閃記憶體不僅有SLC、MLC和TLC類型之分,為了進一步提高容量、降低成本,NAND的製程工藝也在不斷進步,從早期的50nm一路狂奔到目前的15/16nm,但NAND快閃記憶體跟處理器不一樣,先進工藝雖然帶來了更大的容量,但NAND快閃記憶體的製程工藝是雙刃劍,容量提升、成本降低的同時可靠性及性能都在下降,因為工藝越先進,NAND的氧化層越薄,可靠性也越差,廠商就需要採取額外的手段來彌補,但這又會提高成本,以致於達到某個點之後製程工藝已經無法帶來優勢了。
相比之下,3D NAND解決問題的思路就不一樣了,為了提高NAND的容量、降低成本,廠商不需要費勁心思去提高製程工藝了,轉而堆疊更多的層數就可以了,這樣一來3D NAND快閃記憶體的容量、性能、可靠性都有了保證了,比如東芝的15nm NAND容量密度為1.28Gb/mm2,而三星32層堆棧的3D NAND可以輕松達到1.87Gb/mm2,48層堆棧的則可以達到2.8Gb/mm2。
3D NAND快閃記憶體在容量、速度、能效及可靠性上都有優勢
傳統的平面NAND快閃記憶體現在還談不上末路,主流工藝是15/16nm,但10/9nm節點很可能是平面NAND最後的機會了,而3D NAND快閃記憶體還會繼續走下去,目前的堆棧層數不過32-48層,廠商們還在研發64層甚至更高層數的堆棧技術。
四大NAND豪門的3D NAND快閃記憶體及特色
在主要的NAND廠商中,三星最早量產了3D NAND,其他幾家公司在3D NAND快閃記憶體量產上要落後三星至少2年時間,Intel、美光去年才推出3D NAND快閃記憶體,Intel本月初才發布了首款3D NAND快閃記憶體的SSD,不過主要是面向企業級市場的。
這四大豪門的3D NAND快閃記憶體所用的技術不同,堆棧的層數也不一樣,而Intel在常規3D NAND快閃記憶體之外還開發了新型的3D XPoint快閃記憶體,它跟目前的3D快閃記憶體有很大不同,屬於殺手鐧級產品,值得關注。
四大NAND豪門的3D NAND快閃記憶體規格及特色
上述3D NAND快閃記憶體中,由於廠商不一定公布很多技術細節,特別是很少提及具體的製程工藝,除了三星之外其他廠商的3D NAND快閃記憶體現在才開始推向市場,代表性產品也不足。
三星:最早量產的V-NAND快閃記憶體
三星是NAND快閃記憶體市場最強大的廠商,在3D NAND快閃記憶體上也是一路領先,他們最早在2013年就開始量產3D NAND快閃記憶體了。在3D NAND路線上,三星也研究過多種方案,最終量產的是VG垂直柵極結構的V-NAND快閃記憶體,目前已經發展了三代V-NAND技術,堆棧層數從之前的24層提高到了48層,TLC類型的3D NAND核心容量可達到256Gb容量,在自家的840、850及950系列SSD上都有使用。
三星最早量產了3D NAND快閃記憶體
值得一提的是,三星在3D NAND快閃記憶體上領先不光是技術、資金的優勢,他們首先選擇了CTF電荷擷取快閃記憶體(charge trap flash,簡稱CTF)路線,相比傳統的FG(Floating Gate,浮柵極)技術難度要小一些,這多少也幫助三星佔了時間優勢。
有關V-NAND快閃記憶體的詳細技術介紹可以參考之前的文章:NAND新時代起點,三星V-NAND技術詳解
東芝/閃迪:獨辟蹊徑的BiCS技術
東芝是快閃記憶體技術的發明人,雖然現在的份額和產能被三星超越,不過東芝在NAND及技術領域依然非常強大,很早就投入3D NAND研發了,2007年他們獨辟蹊徑推出了BiCS技術的3D NAND——之前我們也提到了,2D NAND快閃記憶體簡單堆棧是可以作出3D NAND快閃記憶體的,但製造工藝復雜,要求很高,而東芝的BiCS快閃記憶體是Bit Cost Scaling,強調的就是隨NAND規模而降低成本,號稱在所有3D NAND快閃記憶體中BiCS技術的快閃記憶體核心面積最低,也意味著成本更低。
東芝的BiCS技術3D NAND
東芝和閃迪是戰略合作夥伴,雙方在NAND領域是共享技術的,他們的BiCS快閃記憶體去年開始量產,目前的堆棧層數是48層,MLC類型的核心容量128Gb,TLC類型的容量可達256Gb,預計會在日本四日市的Fab 2工廠規模量產,2016年可以大量出貨了。
SK Hynix:悶聲發財的3D NAND
在這幾家NAND廠商中,SK Hynix的3D NAND最為低調,相關報道很少,以致於找不到多少SK Hynix的3D NAND快閃記憶體資料,不過從官網公布的信息來看,SK Hynix的3D NAND快閃記憶體已經發展了3代了,2014年Q4推出的第一代,2015年Q3季度推出的第二代,去年Q4推出的則是第三代3D NAND快閃記憶體,只不過前面三代產品主要面向eMCC 5.0/5.1、UFS 2.0等移動市場,今年推出的第四代3D NAND快閃記憶體則會針對UFS 2.1、SATA及PCI-E產品市場。
SK Hynix的3D NAND快閃記憶體堆棧層數從36層起步,不過真正量產的是48層堆棧的3D NAND快閃記憶體,MLC類型的容量128Gb,TLC類型的也可以做到256Gb容量。
Intel/美光:容量最高的3D NAND快閃記憶體
這幾家廠商中,Intel、美光的3D NAND快閃記憶體來的最晚,去年才算正式亮相,不過好菜不怕晚,雖然進度上落後了點,但IMFT的3D NAND有很多獨特之處,首先是他們的3D NAND第一款採用FG浮柵極技術量產的,所以在成本及容量上更有優勢,其MLC類型快閃記憶體核心容量就有256Gb,而TLC快閃記憶體則可以做到384Gb,是目前TLC類型3D NAND快閃記憶體中容量最大的。
美光、Intel的3D NAND容量密度是最高的
384Gb容量還不終點,今年的ISSCC大會上美光還公布了容量高達768Gb的3D NAND快閃記憶體論文,雖然短時間可能不會量產,但已經給人帶來了希望。
Intel的殺手鐧:3D XPoint快閃記憶體
IMFT在3D NAND快閃記憶體上進展緩慢已經引起了Intel的不滿,雖然雙方表面上還很和諧,但不論是16nm快閃記憶體還是3D快閃記憶體,Intel跟美光似乎都有分歧,最明顯的例子就是Intel都開始採納友商的快閃記憶體供應了,最近發布的540s系列硬碟就用了SK Hynix的16nm TLC快閃記憶體,沒有用IMFT的。
Intel、美光不合的證據還有最明顯的例子——那就是Intel甩開美光在中國大連投資55億升級晶圓廠,准備量產新一代快閃記憶體,很可能就是3D XPoint快閃記憶體,這可是Intel的殺手鐧。
3D XPoint快閃記憶體是Intel掌控未來NAND市場的殺手鐧
這個3D XPoint快閃記憶體我們之前也報道過很多了,根據Intel官方說法,3D XPoint快閃記憶體各方面都超越了目前的內存及快閃記憶體,性能是普通顯存的1000倍,可靠性也是普通快閃記憶體的1000倍,容量密度是內存的10倍,而且是非易失性的,斷電也不會損失數據。
由於還沒有上市,而且Intel對3D XPoint快閃記憶體口風很嚴,所以我們無法確定3D XPpoint快閃記憶體背後到底是什麼,不過比較靠譜的說法是基於PCM相變存儲技術,Intel本來就是做存儲技術起家的,雖然現在的主業是處理器,但存儲技術從來沒放鬆,在PCM相變技術上也研究了20多年了,現在率先取得突破也不是沒可能。
相比目前的3D NAND快閃記憶體,3D XPoint快閃記憶體有可能革掉NAND及DRAM內存的命,因為它同時具備這兩方面的優勢,所以除了做各種規格的SSD硬碟之外,Intel還准備推出DIMM插槽的3D XPoint硬碟,現在還不能取代DDR內存,但未來一切皆有可能。
最後再回到我們開頭提到的問題上——中國大陸現在也把存儲晶元作為重點來抓,武漢新芯科技(XMC)已經在武漢開工建設12英寸晶圓廠,第一個目標就是NAND快閃記憶體,而且是直接切入3D NAND快閃記憶體,他們的3D NAND技術來源於飛索半導體(Spansion),而後者又是1993年AMD和富士通把雙方的NOR快閃記憶體部門合並而來,後來他們又被賽普拉斯半導體以40億美元的價格收購。
2015年新芯科技與飛索半導體達成了合作協議,雙方合作研發、生產3D NAND快閃記憶體,主要以後者的MirrorBit快閃記憶體技術為基礎。不過小編搜遍了網路也沒找到多少有關MirrorBit的技術資料。這兩家公司的快閃記憶體技術多是NOR領域的,3D NAND顯然是比不過三星、SK Hynix及東芝等公司的,有一種說法是MirrorBit的堆棧層數只有8層,如果真是這樣,相比主流的32-48層堆棧就差很遠了,成本上不會有什麼優勢。
Ⅳ 相變存儲器的發展歷史
二十世紀五十年代至六十年代,Dr. Stanford Ovshinsky開始研究無定形物質的性質。無定形物質是一類沒有表現出確定、有序的結晶結構的物質。1968年,他發現某些玻璃在變相時存在可逆的電阻系數變化。1969年,他又發現激光在光學存儲介質中的反射率會發生響應的變化。1970年,他與他的妻子Dr. Iris Ovshinsky共同建立的能量轉換裝置(ECD)公司,發布了他們與Intel的Gordon Moore合作的結果。1970年9月28日在Electronics發布的這一篇文章描述了世界上第一個256位半導體相變存儲器。
近30年後,能量轉換裝置(ECD)公司與MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。在2000年2月,Intel與Ovonyx發表了合作與許可協議,此份協議是現代PCM研究與發展的開端。2000年12月,STMicroelectronics(ST)也與Ovonyx開始合作。至2003年,以上三家公司將力量集中,避免重復進行基礎的、競爭的研究與發展,避免重復進行延伸領域的研究,以加快此項技術的進展。2005年,ST與Intel發表了它們建立新的快閃記憶體公司的意圖,新公司名為Numonyx。
在1970年第一份產品問世以後的幾年中,半導體製作工藝有了很大的進展,這促進了半導體相變存儲器的發展。同時期,相變材料也愈加完善以滿足在可重復寫入的CD與DVD中的大量使用。Intel開發的相變存儲器使用了硫屬化物(Chalcogenides),這類材料包含元素周期表中的氧/硫族元素。Numonyx的相變存儲器使用一種含鍺、銻、碲的合成材料(Ge2Sb2Te5),多被稱為GST。現今大多數公司在研究和發展相變存儲器時都都使用GST或近似的相關合成材料。大部分DVD-RAM都是使用與Numonyx相變存儲器使用的相同的材料。
2011年8月31日,中國首次完成第一批基於相變存儲器的產品晶元。
2015年,《自然·光子學》雜志布了世界上第一個或可長期存儲數據且完全基於光的相變存儲器。

Ⅳ 相變存儲OUM是什麼
相變存儲器(OUM)
奧弗辛斯基(Stanford
Ovshinsky)在1968年發表了第一篇關於非晶體相變的論文,創立了非晶體半導體學。一年以後,他首次描述了基於相變理論的存儲器:材料由非晶體狀態變成晶體,再變回非晶體的過程中,其非晶體和晶體狀態呈現不同的反光特性和電阻特性,因此可以利用非晶態和晶態分別代表「0」和「1」來存儲數據。後來,人們將這一學說稱為奧弗辛斯基電子效應。相變存儲器是基於奧弗辛斯基效應的元件,因此被命名為奧弗辛斯基電效應統一存儲器(OUM),如圖2所示。從理論上來說,OUM的優點在於產品體積較小、成本低、可直接寫入(即在寫入資料時不需要將原有資料抹除)和製造簡單,只需在現有的CMOS工藝上增加2~4次掩膜工序就能製造出來。
OUM是世界頭號半導體晶元廠商Intel公司推崇的下一代非易失性、大容量存儲技術。Intel和該項技術的發明廠商Ovonyx
公司一起,正在進行技術完善和可製造性方面的研發工作。Intel公司在2001年7月就發布了0.18mm工藝的4Mb
OUM測試晶元,該技術通過在一種硫化物上生成高低兩種不同的阻抗來存儲數據。2003年VLSI會議上,Samsung公司也報道研製成功以Ge2Sb2Te5(GST)為存儲介質,採用0.25mm工藝制備的小容量OUM,工作電壓在1.1V,進行了1.8x109
讀寫循環,在1.58x109循環後沒有出現疲勞現象。
不過OUM的讀寫速度和次數不如FeRAM和MRAM,同時如何穩定維持其驅動溫度也是一個技術難題。2003年7月,Intel負責非易失性存儲器等技術開發的S.K.Lai還指出OUM的另一個問題:OUM的存儲單元雖小,但需要的外圍電路面積較大,因此晶元面積反而是OUM的一個頭疼問題。同時從目前來看,OUM的生產成本比Intel預想的要高得多,也成為阻礙其發展的瓶頸之一。
Ⅵ 科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢
科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢,如今數據產量呈爆炸式增長,傳統的馮諾依曼計算架構成為未來繼續提升計算系統性能的主要技術障礙。能夠集存儲和計算功能於一身的相變隨機存儲器是突破馮諾依曼計算架構瓶頸的理想路徑選擇。它具有非易失性、編程速度快、循環壽命長等優點。然而,在PCRAM中相變材料和加熱電極之間的接觸面積很大,這導致相變存儲器的高功耗。如何進一步降低功耗已經成為相變存儲器未來發展的最大挑戰之一。

非易失性存儲技術在許多方面取得了重大進展,為提高計算機系統的存儲能效帶來了新的機遇。利用新型非易失性存儲技術取代傳統存儲技術,可以滿足計算機技術發展對高存儲能效的需求。以相變存儲器(PCM)為代表的許多新型存儲技術,以其高集成度、低功耗的特點,引起了國內外研究者的關注。以上就是對科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢這個問題的解答。
Ⅶ 光碟技術的發展史
早在1968年,美國的ECD(Energy Conversion Device)公司就開始研究晶態和非晶態之間的轉換。1971年ECD和IBM公司合作研製成功了世界上第一片只讀相變光碟存儲器,隨後相繼開發成功了利用相變原理製造的一次寫WO盤。1983年,日本松下公司推出了世界上第一台可擦寫相變型光碟驅動器。1994年,松下公司又將相變型可擦寫光碟驅動器與四倍速CD-ROM相結合,推出了PD光碟驅動器,在一台光碟驅動器上同時具有相變型可擦寫與四倍速CD-ROM功能。松下公司一在聲稱PD並不是英文縮寫,但是人們通常將其理解為英文Phase-change Disk或Power Drive的縮寫。
與MO技術相比,由於相變光碟僅用光學技術來讀/寫,所以讀/寫光學頭可以做的相對比較簡單,存取時間也就可以提高;由於相變光碟的讀出方法與CD-ROM、CD-R光碟相同,因此兼容CD-ROM和CD-R的多功能相變光碟驅動器就變的容易實現,PD、CD-RW和可擦寫DVD-RAM等新一代可擦寫光碟存儲器均採用了相變技術。
相變光碟存儲技術經過20多年的不斷研究和穩步發展,具有比MO存儲密度高、記錄成本低、介質壽命長、驅動器結構簡單、讀出信號信噪比高和不受外界磁場環境影響等突出優點,特別是相變光碟存儲器能向下兼容目前廣泛使用的CD-ROM和CD-R,因此相變光碟技術已成為光存儲技術中的主流技術,具有廣闊的應用前景。
光碟發展歷史
光碟存儲技術是70年代初開始發展起來的一項高新技術。光碟存儲具有存儲密度高、容量大、可隨機存取、保存壽命長、工作穩定可靠、輕便易攜帶等一系列其它記錄媒體無可比擬的優點,特別適於大數據量信息的存儲和交換。光碟存儲技術不僅能滿足信息化社會海量信息存儲的需要,而且能夠同時存儲聲音、文字、圖形、圖象等多種媒體的信息,從而使傳統的信息存儲、傳輸、管理和使用方式發生了根本性的變化。
光碟存儲技術近年來不斷取得重大突破,並且進入了商業化大規模生產,在日本、北美及歐洲工業化國家已逐漸形成了獨立的光碟產業,其應用范圍也在不斷擴大,幾乎已深入到人類社會活動和生活的一切領域,對人類的工作方式、學習方式和生活方式產生了深遠的影響。在過去的幾年中,世界各主要光碟產業國家的光碟產業銷售額都在以兩位數以上的速度增長,1996年底全世界各種光碟驅動器的銷售總量達5760萬台,其中CD-ROM驅動器的銷售量為5450萬台,CD-R驅動器銷售量為150萬台。全球CD-ROM驅動器的累計裝機總量已超過1億台,CD-R驅動器的銷售量比1995年增長了10倍,是所有光碟產品中增長速度最快的一種。1996年全球光碟碟片的銷售量達到了1億片,其中CD-ROM盤約佔90%,CD-R盤約佔9%,其它可擦寫光碟僅佔1%。
一.只讀式光碟存儲器CD-ROM
自1985年Philips和Sony公布了在光碟上記錄計算機數據的黃皮書以來,CD-ROM驅動器便在計算機領域得到了廣泛的應用。CD-ROM光碟不僅可交叉存儲大容量的文字、聲音、圖形和圖象等多種媒體的數字化信息,而且便於快速檢索,因此CD-ROM驅動器已成為多媒體計算機中的標准配置之一。MPC標准已經對CD-ROM的數據傳輸速率和所支持的數據格式進行了規定。MPC 3標准要求CD-ROM驅動器的數據傳輸率為600KB/秒(4倍速),並支持CD-ROM、CD-ROM XA、Photo CD、Video CD和CD-I等光碟格式。
MPC 3標准對CD-ROM驅動器的要求只是一種基本的要求,CD-ROM驅動器從誕生至今一直持續不斷地向高倍速方向發展。1996年秋末,已有六種品牌的12倍速CD-ROM驅動器進入市場,Philips宣稱在1997年第一季度將推出16倍速CD-ROM驅動器。但是專家們認為,適於高倍速CD-ROM驅動器的操作、驅動及應用軟體還未出現,CD-ROM的使用性能並未隨著驅動器速度的加快而加快。就多媒體計算機的性能而言,6倍速的CD-ROM驅動器已能滿足要求。
CD-ROM是發行多媒體節目的優選載體。原因是它的存儲容量大,製造成本低,大批量生產時每片不到5元人民幣。目前,大量的文獻資料、視聽材料、教育節目、影視節目、游戲、圖書、計算機軟體等都通過CD-ROM來傳播。
光碟製作、光碟印刷、光碟刻錄、光碟復制、光碟列印、多媒體光碟製作等一系列服務!http://www.bjdisc.com.cn/憑著專業的設計隊伍、高效的光碟復制設備、先進的絲網印刷設備,從盤面設計製作到成品,我們可以在優質、高效的前提下為您一步到位地完成!
二.一次寫光碟存儲器CD-R
信息時代的加速到來使得越來越多的數據需要保存,需要交換。由於CD-ROM是只讀式光碟,因此用戶自己無法利用CD-ROM對數據進行備份和交換。在CD-R刻錄機大批量進入市場以前,用戶的唯一選擇就是採用可擦寫光碟機。
可擦寫光碟機根據其記錄原理的不同,有磁光碟機動器MO和相變驅動器PD。雖然這兩種產品較早進入市場,但是記錄在MO或PD碟片上的數據無法在廣泛使用的CD-ROM驅動器上讀取,因此難以實現數據交換和數據分發,更不可能製作自己的CD、VCD或CD-ROM節目。
CD-R的出現適時地解決了上述問題,使。CD-R是英文CD Recordable的簡稱,中文簡稱刻錄機。CD-R標准(橙皮書)是由Philips公司於1990年制定的,目前已成為工業界廣泛認可的標准。CD-R的另一英文名稱是CD-WO(Write Once ),顧名思意,就是只允許寫一次,寫完以後,記錄在CD-R盤上的信息無法被改寫,但可以象CD-ROM碟片一樣,在CD-ROM驅動器和CD-R驅動器上被反復地讀取多次。
CD-R盤與CD-ROM盤相比有許多共同之處,它們的主要差別在於CD-R盤上增加了一層有機染料作為記錄層,反射層用金,而不是CD-ROM中的鋁。當寫入激光束聚焦到記錄層上時,染料被加熱後燒溶,形成一系列代表信息的凹坑。這些凹坑與CD-ROM盤上的凹坑類似,但CD-ROM盤上的凹坑是用金屬壓模壓出的。
CD-R驅動器中使用的光學讀/寫頭與CD-ROM的光學讀出頭類似,只是其激光功率受寫入信號的調制。CD-R驅動器刻錄時,在要形成凹坑的地方,半導體激光器的輸出功率變大;不形成凹坑的地方,輸出功率變小。在讀出時,與CD-ROM一樣,要輸出恆定的小功率。
通常,CD-ROM除了要符合黃皮書以外,還要遵照一個附加的國際標准:ISO9660。這是因為當初Philips和Sony沒有定義CD-ROM的文件結構,而且各種計算機操作系統也只規定了該操作系統下的硬碟和軟盤文件結構,使得不同廠家生產的CD-ROM具有不同的文件結構,曾經一度引起了混亂。後來,ISO 9660規定了CD-ROM的文件結構,Microsoft公司很快就為CD-ROM開發了設備驅動軟體MSCDEX,使得不同生產廠家的CD-ROM在不同的操作系統環境下都能彼此兼容,就象該操作系統下的另外一個邏輯驅動器--目錄或磁碟。
CD-R的發展已有5年的歷史,但是也還存在上述類似的問題。我們無法在DOS或Windows環境下對CD-R驅動器直接進行讀寫,而是要依賴於CD-R生產廠家提供的刻錄軟體。大多數刻錄軟體的用戶界面並不直觀,而且系統安裝設置也比較繁瑣,給用戶的使用帶來很多麻煩和障礙。
為了改變這一狀況,國際標准化組織下的OSTA(光學存儲技術協會)最近制定了CD-UDF通用磁碟格式,只要對每一種操作系統開發相應的設備驅動軟體或擴展軟體,就可使操作系統將CD-R驅動器看作為一個邏輯驅動器。採用CD-UDF的CD-R刻錄機會使用戶感到,使用CD-R備份文件就如同使用軟盤或硬碟一樣方便。用戶可以直接使用DOS命令對CD-R進行讀寫操作,如果用戶使用如Windows Explorer這樣的圖形文件管理軟體,可將文件拖曳或投入(drag and drop)到CD-R刻錄機中,就可將文件課錄到CD-R盤上。
CD-UDF也是溝通ISO9660與DVD-UDF文件結構的橋梁,採用CD-UDF文件結構的CD-R盤可在DVD-ROM驅動器上讀出。
Philips公司最近推出的第四代CDD2600刻錄機首先採用了CD-UDF文件格式,並可在Windows 95和Windows NT環境下即插即用,使CD-R技術的發展步入了一個新的里程。
CD-R的最大特點是與CD-ROM完全兼容,CD-R盤上的信息可在廣泛使用的CD-ROM驅動器上讀取,而且其成本在各種光碟記錄介質中最低,每兆位元組所需化費的代價約為人民幣0.1元。CD-R光碟適於存儲數據、文字、圖形、圖象、聲音和電影等多種媒體,並且具有存儲可靠性高、壽命長(100年)和檢索方便等突出優點,目前已取代數據流磁帶(DDS)而成為數據備份、檔案保存、數據交換、及資料庫分發的理想記錄媒體,在企業、銀行證券、保險公司、檔案館、圖書館、博物館、醫院、出版社、新聞機關、政府機關及軍事部門的信息存儲、管理及傳遞中獲得了極為廣泛的應用。特別是為那些需要永久性存儲信息而不準擦除或更改的用戶提供了一種最佳方案。
三.可擦寫光碟存儲器
1.MO可擦寫光碟存儲器
MO是英文Magnet-Optical的縮寫,是指利用激光與磁性共同作用的結果記錄信息的光磁碟。MO盤用來存儲信息的媒體與軟磁碟相似,但其信息記錄密度和容量卻比軟磁碟高的多。這是由於記錄時在盤的上面施加磁場,而在盤下面用激光照射。磁場作用於盤面上的區域比較大,而激光通過光學系統聚焦於盤面的光點直徑只有1~2微米。在受光區域,激光的光能轉化為熱能,並使磁性層受熱而變的不穩定,即變的易受磁場影響。這樣,在直徑只有1~2微米的極小區域內就可記錄下一個單位的信息。通常的磁性記錄方式存儲一個單位的信息時,要佔用相當大的區域,因而磁軌也相應變寬,盤上記錄信息的總量也就很小。
MO碟片雖然比硬碟和軟盤便宜和耐用,但是與CD-R碟片相比就顯得比較昂貴了。MO的致命缺點是不能用普通CD-ROM驅動器讀出,因而不能滿足信息社會對計算機數據進行交換和數據分發的要求,在網路技術和網路建設不發達的國內,這一問題日驅突出和嚴重。
2.PCD可擦寫光碟存儲器
相變光碟(Phase Change Disk)與MO不同,MO光碟的記錄和讀出原理是利用磁技術和光技術相結合來記錄和讀出信息,而相變光碟的記錄和讀出原理只是用光技術來記錄和讀出信息。相變光碟利用激光使記錄介質在結晶態和非結晶態之間的可逆相變結構來實現信息的記錄和擦除。在寫操作時,聚焦激光束加熱記錄介質的目的是改變相變記錄介質晶體狀態,用結晶狀態和非結晶狀態來區分0和1;讀操作時,利用結晶狀態和非結晶狀態具有不同反射率這個特性來檢測0和1信號。
早在1968年,美國的ECD(Energy Conversion Device)公司就開始研究晶態和非晶態之間的轉換。1971年ECD和IBM公司合作研製成功了世界上第一片只讀相變光碟存儲器,隨後相繼開發成功了利用相變原理製造的一次寫WO盤。1983年,日本松下公司推出了世界上第一台可擦寫相變型光碟驅動器。1994年,松下公司又將相變型可擦寫光碟驅動器與四倍速CD-ROM相結合,推出了PD光碟驅動器,在一台光碟驅動器上同時具有相變型可擦寫與四倍速CD-ROM功能。松下公司一在聲稱PD並不是英文縮寫,但是人們通常將其理解為英文Phase-change Disk或Power Drive的縮寫。
與MO技術相比,由於相變光碟僅用光學技術來讀/寫,所以讀/寫光學頭可以做的相對比較簡單,存取時間也就可以提高;由於相變光碟的讀出方法與CD-ROM、CD-R光碟相同,因此兼容CD-ROM和CD-R的多功能相變光碟驅動器就變的容易實現,PD、CD-RW和可擦寫DVD-RAM等新一代可擦寫光碟存儲器均採用了相變技術。
相變光碟存儲技術經過20多年的不斷研究和穩步發展,具有比MO存儲密度高、記錄成本低、介質壽命長、驅動器結構簡單、讀出信號信噪比高和不受外界磁場環境影響等突出優點,特別是相變光碟存儲器能向下兼容目前廣泛使用的CD-ROM和CD-R,因此相變光碟技術已成為光存儲技術中的主流技術,具有廣闊的應用前景。
Ⅷ 相變存儲材料就業如何
材料物理主要研究方向有:固體微結構分析於信息功能材料,位移式相變與形狀記憶和超彈性材料,復合功能材料與智能結構,生物醫學材料及應用以及界面化學與功能陶瓷等。例如我們常用的光碟,小體積卻具有那麼大的存儲容量,就需要固體微結構分析來保證,同時其也是信息功能材料。又比如我們常用的飲水機陶瓷過濾器就是一個有很多微小通孔的功能陶瓷器件,能讓水流過而阻塞其中的雜質 這點我想你知道了吧? 所以就業方向從事電子材料,微電子,信息技術及其相關領域的研究,例如微軟,Intel,貝爾-阿爾卡特等公司都很需要材料物理專業的畢業生。加油去應聘吧!
Ⅸ adv func mater對數據要求高嗎
adv func mater對數據要求不算太高。
信息存儲在人類歷史的演變中發揮了重要作用。如今,電子技術的發展大大增加了數碼數據量。據統計,全球數碼數據量每兩年翻一番,到2020年,將達到44澤位元組(1澤位元組 = 10萬億億位元組)。隨著物聯網的發展,每秒鍾都有大量的數據以視頻、音樂、圖片、網上社交、商業信息等形式產生並傳輸。因此,大數據的存儲、傳輸和處理將面臨嚴峻挑戰。當下迫切需要具有快速度、高密度和低功耗的非易失性電子存儲器件來應對這些問題。相變存儲技術作為最早進入產業化應用之一的高速非易失性存儲技術備受全球半導體業界關注,然而目前還面臨著功耗高等難題,這對高密度存儲集成電路進一步開發帶來障礙。
Ⅹ 什麼是相變存儲器
相變存儲器簡稱PCM,是基於奧弗辛斯基在20世紀60年代末提出的奧弗辛斯基電子效應的存儲器。
奧弗辛斯基電子效應是指材料由非晶體狀態變成晶體,再變回非晶體的過程中,其非晶體和晶體狀態呈現不同的反光特性和電阻特性,因此可以利用非晶態和晶態分別代表「0」和「1」來存儲數據。
相變存儲器比起當今主流產品具有多種優勢,有望同時替代公眾熟知的兩大類存儲技術,如應用於U盤的可斷電存儲的快閃記憶體技術,又如應用於電腦內存的不斷電存儲的DRAM技術。
在存儲密度方面,目前主流存儲器在20多納米的技術節點上出現極限,無法進一步緊湊集成;而相變存儲器可達5納米量級。在存儲速度方面,相變存儲器的存儲單元比快閃記憶體快100倍,使用壽命也達百倍以上。
