當前位置:首頁 » 存儲配置 » mysql資料庫存儲優化

mysql資料庫存儲優化

發布時間: 2022-12-15 02:09:34

㈠ Mysql資料庫性能優化有哪些技巧

1.存儲引擎的選擇如果數據表需要事務處理,應該考慮使用InnoDB,因為它完全符合ACID特性。如果不需要事務處理,使用默認存儲引擎MyISAM是比較明智的。並且不要嘗試同時使用這兩個存儲引擎。思考一下:在一個事務處理中,一些數據表使用InnoDB,而其餘的使用MyISAM.結果呢?整個subject將被取消,只有那些在事務處理中的被帶回到原始狀態,其餘的被提交的數據轉存,這將導致整個資料庫的沖突。然而存在一個簡單的方法可以同時利用兩個存儲引擎的優勢。目前大多數MySQL套件中包括InnoDB、編譯器和鏈表,但如果你選擇MyISAM,你仍然可以單獨下載InnoDB,並把它作為一個插件。很簡單的方法,不是嗎?
2.計數問題如果數據表採用的存儲引擎支持事務處理(如InnoDB),你就不應使用COUNT(*)計算數據表中的行數。這是因為在產品類資料庫使用COUNT(*),最多返回一個近似值,因為在某個特定時間,總有一些事務處理正在運行。如果使用COUNT(*)顯然會產生bug,出現這種錯誤結果。
3.反復測試查詢查詢最棘手的問題並不是無論怎樣小心總會出現錯誤,並導致bug出現。恰恰相反,問題是在大多數情況下bug出現時,應用程序或資料庫已經上線。的確不存在針對該問題切實可行的解決方法,除非將測試樣本在應用程序或資料庫上運行。任何資料庫查詢只有經過上千個記錄的大量樣本測試,才能被認可。
4.避免全表掃描通常情況下,如果MySQL(或者其他關系資料庫模型)需要在數據表中搜索或掃描任意特定記錄時,就會用到全表掃描。此外,通常最簡單的方法是使用索引表,以解決全表掃描引起的低效能問題。然而,正如我們在隨後的問題中看到的,這存在錯誤部分。
5.使用「EXPLAIN」進行查詢當需要調試時,EXPLAIN是一個很好的命令,下面將對EXPLAIN進行深入探討。

㈡ 怎麼優化MySQL資料庫

1、選取最適用的欄位屬性,盡可能減少定義欄位長度,盡量把欄位設置NOT NULL,例如'省份,性別',最好設置為ENUM
2、使用連接(JOIN)來代替子查詢:
a.刪除沒有任何訂單客戶:DELETE FROM customerinfo WHERE customerid NOT in(SELECT customerid FROM orderinfo)
b.提取所有沒有訂單客戶:SELECT FROM customerinfo WHERE customerid NOT in(SELECT customerid FROM orderinfo)
c.提高b的速度優化:SELECT FROM customerinfo LEFT JOIN orderid customerinfo.customerid=orderinfo.customerid
WHERE orderinfo.customerid IS NULL
3、使用聯合(UNION)來代替手動創建的臨時表
a.創建臨時表:SELECT name FROM `nametest` UNION SELECT username FROM `nametest2`
4、事務處理:
a.保證數據完整性,例如添加和修改同時,兩者成立則都執行,一者失敗都失敗
mysql_query("BEGIN");
mysql_query("INSERT INTO customerinfo (name) VALUES ('$name1')";
mysql_query("SELECT * FROM `orderinfo` where customerid=".$id");
mysql_query("COMMIT");
5、鎖定表,優化事務處理:
a.我們用一個 SELECT 語句取出初始數據,通過一些計算,用 UPDATE 語句將新值更新到表中。
包含有 WRITE 關鍵字的 LOCK TABLE 語句可以保證在 UNLOCK TABLES 命令被執行之前,
不會有其它的訪問來對 inventory 進行插入、更新或者刪除的操作
mysql_query("LOCK TABLE customerinfo READ, orderinfo WRITE");
mysql_query("SELECT customerid FROM `customerinfo` where id=".$id);
mysql_query("UPDATE `orderinfo` SET ordertitle='$title' where customerid=".$id);
mysql_query("UNLOCK TABLES");
6、使用外鍵,優化鎖定表
a.把customerinfo里的customerid映射到orderinfo里的customerid,
任何一條沒有合法的customerid的記錄不會寫到orderinfo里
CREATE TABLE customerinfo
(
customerid INT NOT NULL,
PRIMARY KEY(customerid)
)TYPE = INNODB;
CREATE TABLE orderinfo
(
orderid INT NOT NULL,
customerid INT NOT NULL,
PRIMARY KEY(customerid,orderid),
FOREIGN KEY (customerid) REFERENCES customerinfo
(customerid) ON DELETE CASCADE
)TYPE = INNODB;
注意:'ON DELETE CASCADE',該參數保證當customerinfo表中的一條記錄刪除的話同時也會刪除order
表中的該用戶的所有記錄,注意使用外鍵要定義事務安全類型為INNODB;
7、建立索引:
a.格式:
(普通索引)->
創建:CREATE INDEX <索引名> ON tablename (索引欄位)
修改:ALTER TABLE tablename ADD INDEX [索引名] (索引欄位)
創表指定索引:CREATE TABLE tablename([...],INDEX[索引名](索引欄位))
(唯一索引)->
創建:CREATE UNIQUE <索引名> ON tablename (索引欄位)
修改:ALTER TABLE tablename ADD UNIQUE [索引名] (索引欄位)
創表指定索引:CREATE TABLE tablename([...],UNIQUE[索引名](索引欄位))
(主鍵)->
它是唯一索引,一般在創建表是建立,格式為:
CREATA TABLE tablename ([...],PRIMARY KEY[索引欄位])
8、優化查詢語句
a.最好在相同欄位進行比較操作,在建立好的索引欄位上盡量減少函數操作
例子1:
SELECT * FROM order WHERE YEAR(orderDate)<2008;(慢)
SELECT * FROM order WHERE orderDate<"2008-01-01";(快)
例子2:
SELECT * FROM order WHERE addtime/7<24;(慢)
SELECT * FROM order WHERE addtime<24*7;(快)
例子3:
SELECT * FROM order WHERE title like "%good%";
SELECT * FROM order WHERE title>="good" and name<"good";

㈢ mysql資料庫如何優化誰能給出點具體的解決方案

1、explain:解釋sql的執行計劃,後邊的sql不執行
2、explain partitions :用於查看存在分區的表的執行計劃
3、explain extended:待驗證
4、show warnings:
5、show create table:查看錶的詳細的創建語句,便於用戶對表進行優化
6、show indexes :產看錶的所有索引,show indexes from table_name,同樣也可以從information_schema.statistics表中獲得同樣的信息。cardinality列很重要,表示數據量。
7、show tables status: 查看資料庫表的底層大小以及表結構,同樣可以從information_schema.tables表中獲得底層表的信息。
8、show [global|session]status:可以查看mysql伺服器當前內部狀態信息。可以幫助卻行mysql伺服器的負載的各種指標。默認是session。同information_schema.global_status和information_schema.session_status
9、show [global|session] variables :查看當前mysql系統變數的值,其中一些值能影響到sql語句的執行方式。同information_schema.global_variables和information_schema.session_variables;
10、information_schema:包含的表的數量和mysql的版本有關系。

㈣ MySQL資料庫性能優化之分區分表分庫

分表是分散資料庫壓力的好方法。

分表,最直白的意思,就是將一個表結構分為多個表,然後,可以再同一個庫里,也可以放到不同的庫。

當然,首先要知道什麼情況下,才需要分表。個人覺得單表記錄條數達到百萬到千萬級別時就要使用分表了。

分表的分類

**1、縱向分表**

將本來可以在同一個表的內容,人為劃分為多個表。(所謂的本來,是指按照關系型資料庫的第三範式要求,是應該在同一個表的。)

分表理由:根據數據的活躍度進行分離,(因為不同活躍的數據,處理方式是不同的)

案例:

對於一個博客系統,文章標題,作者,分類,創建時間等,是變化頻率慢,查詢次數多,而且最好有很好的實時性的數據,我們把它叫做冷數據。而博客的瀏覽量,回復數等,類似的統計信息,或者別的變化頻率比較高的數據,我們把它叫做活躍數據。所以,在進行資料庫結構設計的時候,就應該考慮分表,首先是縱向分表的處理。

這樣縱向分表後:

首先存儲引擎的使用不同,冷數據使用MyIsam 可以有更好的查詢數據。活躍數據,可以使用Innodb ,可以有更好的更新速度。

其次,對冷數據進行更多的從庫配置,因為更多的操作時查詢,這樣來加快查詢速度。對熱數據,可以相對有更多的主庫的橫向分表處理。

其實,對於一些特殊的活躍數據,也可以考慮使用memcache ,redis之類的緩存,等累計到一定量再去更新資料庫。或者mongodb 一類的nosql 資料庫,這里只是舉例,就先不說這個。

**2、橫向分表**

字面意思,就可以看出來,是把大的表結構,橫向切割為同樣結構的不同表,如,用戶信息表,user_1,user_2等。表結構是完全一樣,但是,根據某些特定的規則來劃分的表,如根據用戶ID來取模劃分。

分表理由:根據數據量的規模來劃分,保證單表的容量不會太大,從而來保證單表的查詢等處理能力。

案例:同上面的例子,博客系統。當博客的量達到很大時候,就應該採取橫向分割來降低每個單表的壓力,來提升性能。例如博客的冷數據表,假如分為100個表,當同時有100萬個用戶在瀏覽時,如果是單表的話,會進行100萬次請求,而現在分表後,就可能是每個表進行1萬個數據的請求(因為,不可能絕對的平均,只是假設),這樣壓力就降低了很多很多。

延伸:為什麼要分表和分區?

日常開發中我們經常會遇到大表的情況,所謂的大表是指存儲了百萬級乃至千萬級條記錄的表。這樣的表過於龐大,導致資料庫在查詢和插入的時候耗時太長,性能低下,如果涉及聯合查詢的情況,性能會更加糟糕。分表和表分區的目的就是減少資料庫的負擔,提高資料庫的效率,通常點來講就是提高表的增刪改查效率。

什麼是分表?

分表是將一個大表按照一定的規則分解成多張具有獨立存儲空間的實體表,我們可以稱為子表,每個表都對應三個文件,MYD數據文件,.MYI索引文件,.frm表結構文件。這些子表可以分布在同一塊磁碟上,也可以在不同的機器上。app讀寫的時候根據事先定義好的規則得到對應的子表名,然後去操作它。

什麼是分區?

分區和分表相似,都是按照規則分解表。不同在於分表將大表分解為若干個獨立的實體表,而分區是將數據分段劃分在多個位置存放,可以是同一塊磁碟也可以在不同的機器。分區後,表面上還是一張表,但數據散列到多個位置了。app讀寫的時候操作的還是大表名字,db自動去組織分區的數據。

**MySQL分表和分區有什麼聯系呢?**

1、都能提高mysql的性高,在高並發狀態下都有一個良好的表現。

2、分表和分區不矛盾,可以相互配合的,對於那些大訪問量,並且表數據比較多的表,我們可以採取分表和分區結合的方式(如果merge這種分表方式,不能和分區配合的話,可以用其他的分表試),訪問量不大,但是表數據很多的表,我們可以採取分區的方式等。

3、分表技術是比較麻煩的,需要手動去創建子表,app服務端讀寫時候需要計運算元表名。採用merge好一些,但也要創建子表和配置子表間的union關系。

4、表分區相對於分表,操作方便,不需要創建子表。

我們知道對於大型的互聯網應用,資料庫單表的數據量可能達到千萬甚至上億級別,同時面臨這高並發的壓力。Master-Slave結構只能對資料庫的讀能力進行擴展,寫操作還是集中在Master中,Master並不能無限制的掛接Slave庫,如果需要對資料庫的吞吐能力進行進一步的擴展,可以考慮採用分庫分表的策略。

**1、分表**

在分表之前,首先要選中合適的分表策略(以哪個字典為分表欄位,需要將數據分為多少張表),使數據能夠均衡的分布在多張表中,並且不影響正常的查詢。在企業級應用中,往往使用org_id(組織主鍵)做為分表欄位,在互聯網應用中往往是userid。在確定分表策略後,當數據進行存儲及查詢時,需要確定到哪張表裡去查找數據,

數據存放的數據表 = 分表欄位的內容 % 分表數量

**2、分庫**

分表能夠解決單表數據量過大帶來的查詢效率下降的問題,但是不能給資料庫的並發訪問帶來質的提升,面對高並發的寫訪問,當Master無法承擔高並發的寫入請求時,不管如何擴展Slave伺服器,都沒有意義了。我們通過對資料庫進行拆分,來提高資料庫的寫入能力,即所謂的分庫。分庫採用對關鍵字取模的方式,對資料庫進行路由。

數據存放的資料庫=分庫欄位的內容%資料庫的數量

**3、即分表又分庫**

資料庫分表可以解決單表海量數據的查詢性能問題,分庫可以解決單台資料庫的並發訪問壓力問題。

當資料庫同時面臨海量數據存儲和高並發訪問的時候,需要同時採取分表和分庫策略。一般分表分庫策略如下:

中間變數 = 關鍵字%(資料庫數量*單庫數據表數量)

庫 = 取整(中間變數/單庫數據表數量)

表 = (中間變數%單庫數據表數量)

實例:

1、分庫分表

很明顯,一個主表(也就是很重要的表,例如用戶表)無限制的增長勢必嚴重影響性能,分庫與分表是一個很不錯的解決途徑,也就是性能優化途徑,現在的案例是我們有一個1000多萬條記錄的用戶表members,查詢起來非常之慢,同事的做法是將其散列到100個表中,分別從members0到members99,然後根據mid分發記錄到這些表中,牛逼的代碼大概是這樣子:

復制代碼 代碼如下:

<?php

for($i=0;$i< 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members
";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}
";

}

?>

2、不停機修改mysql表結構

同樣還是members表,前期設計的表結構不盡合理,隨著資料庫不斷運行,其冗餘數據也是增長巨大,同事使用了下面的方法來處理:

先創建一個臨時表:

/*創建臨時表*/

CREATE TABLE members_tmp LIKE members

然後修改members_tmp的表結構為新結構,接著使用上面那個for循環來導出數據,因為1000萬的數據一次性導出是不對的,mid是主鍵,一個區間一個區間的導,基本是一次導出5萬條吧,這里略去了

接著重命名將新表替換上去:

/*這是個頗為經典的語句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是這樣,基本可以做到無損失,無需停機更新表結構,但實際上RENAME期間表是被鎖死的,所以選擇在線少的時候操作是一個技巧。經過這個操作,使得原先8G多的表,一下子變成了2G多。

㈤ 北大青鳥java培訓:mysql資料庫的優化方法

我們都知道,伺服器資料庫的開發一般都是通過java或者是PHP語言來編程實現的,而為了提高我們資料庫的運行速度和效率,資料庫優化也成為了我們每日的工作重點,今天,河北IT培訓http://www.kmbdqn.cn/就一起來了解一下mysql伺服器資料庫的優化方法。
為什麼要了解索引真實案例案例一:大學有段時間學習爬蟲,爬取了知乎300w用戶答題數據,存儲到mysql數據中。
那時不了解索引,一條簡單的「根據用戶名搜索全部回答的sql「需要執行半分鍾左右,完全滿足不了正常的使用。
案例二:近線上應用的資料庫頻頻出現多條慢sql風險提示,而工作以來,對資料庫優化方面所知甚少。
例如一個用戶數據頁面需要執行很多次資料庫查詢,性能很慢,通過增加超時時間勉強可以訪問,但是性能上需要優化。
索引的優點合適的索引,可以大大減小mysql伺服器掃描的數據量,避免內存排序和臨時表,提高應用程序的查詢性能。
索引的類型mysql數據中有多種索引類型,primarykey,unique,normal,但底層存儲的數據結構都是BTREE;有些存儲引擎還提供hash索引,全文索引。
BTREE是常見的優化要面對的索引結構,都是基於BTREE的討論。
B-TREE查詢數據簡單暴力的方式是遍歷所有記錄;如果數據不重復,就可以通過組織成一顆排序二叉樹,通過二分查找演算法來查詢,大大提高查詢性能。
而BTREE是一種更強大的排序樹,支持多個分支,高度更低,數據的插入、刪除、更新更快。
現代資料庫的索引文件和文件系統的文件塊都被組織成BTREE。
btree的每個節點都包含有key,data和只想子節點指針。
btree有度的概念d>=1。
假設btree的度為d,則每個內部節點可以有n=[d+1,2d+1)個key,n+1個子節點指針。
樹的大高度為h=Logb[(N+1)/2]。
索引和文件系統中,B-TREE的節點常設計成接近一個內存頁大小(也是磁碟扇區大小),且樹的度非常大。
這樣磁碟I/O的次數,就等於樹的高度h。
假設b=100,一百萬個節點的樹,h將只有3層。
即,只有3次磁碟I/O就可以查找完畢,性能非常高。
索引查詢建立索引後,合適的查詢語句才能大發揮索引的優勢。
另外,由於查詢優化器可以解析客戶端的sql語句,會調整sql的查詢語句的條件順序去匹配合適的索引。

㈥ 如何優化mysql資料庫

。從外在條件來說,優化mysql涉及優化硬體、優化磁碟、優化操作系統、選擇應用編程介面等。
二、優化硬體
如果你需要龐大的資料庫表(2G),你應該考慮使用64位的硬體結構,像Alpha、Sparc或即將推出的IA64。因為MySQL內部使用大量64位的整數,64位的CPU將提供更好的性能。
對大資料庫,優化的次序一般是RAM、快速硬碟、CPU能力。
更多的內存通過將最常用的鍵碼頁面存放在內存中可以加速鍵碼的更新。
如果不使用事務安全(transaction-safe)的表或有大表並且想避免長文件檢查,一台UPS就能夠在電源故障時讓系統安全關閉。
對於資料庫存放在一個專用伺服器的系統,應該考慮1G的乙太網。延遲與吞吐量同樣重要。

㈦ mysql資料庫怎麼優化,有幾方面的優化

在開始演示之前,我們先介紹下兩個概念。


概念一,數據的可選擇性基數,也就是常說的cardinality值。


查詢優化器在生成各種執行計劃之前,得先從統計信息中取得相關數據,這樣才能估算每步操作所涉及到的記錄數,而這個相關數據就是cardinality。簡單來說,就是每個值在每個欄位中的唯一值分布狀態。


比如表t1有100行記錄,其中一列為f1。f1中唯一值的個數可以是100個,也可以是1個,當然也可以是1到100之間的任何一個數字。這里唯一值越的多少,就是這個列的可選擇基數。


那看到這里我們就明白了,為什麼要在基數高的欄位上建立索引,而基數低的的欄位建立索引反而沒有全表掃描來的快。當然這個只是一方面,至於更深入的探討就不在我這篇探討的范圍了。


概念二,關於HINT的使用。


這里我來說下HINT是什麼,在什麼時候用。


HINT簡單來說就是在某些特定的場景下人工協助MySQL優化器的工作,使她生成最優的執行計劃。一般來說,優化器的執行計劃都是最優化的,不過在某些特定場景下,執行計劃可能不是最優化。


比如:表t1經過大量的頻繁更新操作,(UPDATE,DELETE,INSERT),cardinality已經很不準確了,這時候剛好執行了一條SQL,那麼有可能這條SQL的執行計劃就不是最優的。為什麼說有可能呢?


來看下具體演示


譬如,以下兩條SQL,

  • A:

  • select * from t1 where f1 = 20;

  • B:

  • select * from t1 where f1 = 30;

  • 如果f1的值剛好頻繁更新的值為30,並且沒有達到MySQL自動更新cardinality值的臨界值或者說用戶設置了手動更新又或者用戶減少了sample page等等,那麼對這兩條語句來說,可能不準確的就是B了。

    這里順帶說下,MySQL提供了自動更新和手動更新表cardinality值的方法,因篇幅有限,需要的可以查閱手冊。

    那回到正題上,MySQL 8.0 帶來了幾個HINT,我今天就舉個index_merge的例子。

    示例表結構:

  • mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+------------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || rank1 | int(11) | YES | MUL | NULL | || rank2 | int(11) | YES | MUL | NULL | || log_time | datetime | YES | MUL | NULL | || prefix_uid | varchar(100) | YES | | NULL | || desc1 | text | YES | | NULL | || rank3 | int(11) | YES | MUL | NULL | |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

  • 表記錄數:

  • mysql> select count(*) from t1;+----------+| count(*) |+----------+| 32768 |+----------+1 row in set (0.01 sec)

  • 這里我們兩條經典的SQL:

  • SQL C:

  • select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

  • SQL D:

  • select * from t1 where rank1 =100 and rank2 =100 and rank3 =100;

  • 表t1實際上在rank1,rank2,rank3三列上分別有一個二級索引。

    那我們來看SQL C的查詢計劃。

    顯然,沒有用到任何索引,掃描的行數為32034,cost為3243.65。

  • mysql> explain format=json select * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "3243.65" }, "table": { "table_name": "t1", "access_type": "ALL", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "rows_examined_per_scan": 32034, "rows_proced_per_join": 115, "filtered": "0.36", "cost_info": { "read_cost": "3232.07", "eval_cost": "11.58", "prefix_cost": "3243.65", "data_read_per_join": "49K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" } }}1 row in set, 1 warning (0.00 sec)

  • 我們加上hint給相同的查詢,再次看看查詢計劃。

    這個時候用到了index_merge,union了三個列。掃描的行數為1103,cost為441.09,明顯比之前的快了好幾倍。

  • mysql> explain format=json select /*+ index_merge(t1) */ * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "441.09" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "union(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1103, "rows_proced_per_join": 1103, "filtered": "100.00", "cost_info": { "read_cost": "330.79", "eval_cost": "110.30", "prefix_cost": "441.09", "data_read_per_join": "473K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" } }}1 row in set, 1 warning (0.00 sec)

  • 我們再看下SQL D的計劃:

  • 不加HINT,

  • mysql> explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "534.34" }, "table": { "table_name": "t1", "access_type": "ref", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "idx_rank1", "used_key_parts": [ "rank1" ], "key_length": "5", "ref": [ "const" ], "rows_examined_per_scan": 555, "rows_proced_per_join": 0, "filtered": "0.07", "cost_info": { "read_cost": "478.84", "eval_cost": "0.04", "prefix_cost": "534.34", "data_read_per_join": "176" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))" } }}1 row in set, 1 warning (0.00 sec)

  • 加了HINT,

  • mysql> explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100G*************************** 1. row ***************************EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "5.23" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "intersect(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1, "rows_proced_per_join": 1, "filtered": "100.00", "cost_info": { "read_cost": "5.13", "eval_cost": "0.10", "prefix_cost": "5.23", "data_read_per_join": "440" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))" } }}1 row in set, 1 warning (0.00 sec)

  • 對比下以上兩個,加了HINT的比不加HINT的cost小了100倍。

    總結下,就是說表的cardinality值影響這張的查詢計劃,如果這個值沒有正常更新的話,就需要手工加HINT了。相信MySQL未來的版本會帶來更多的HINT。

㈧ 優化MYSQL資料庫的方法

(1).資料庫設計方面,這是DBA和Architect的責任,設計結構良好的資料庫,必要的時候,去正規化(英文是這個:denormalize,中文翻譯成啥我不知道),允許部分數據冗餘,避免JOIN操作,以提高查詢效率
(2).系統架構設計方面,表散列,把海量數據散列到幾個不同的表裡面.快慢表,快表只留最新數據,慢表是歷史存檔.集群,主伺服器Read & write,從伺服器read only,或者N台伺服器,各機器互為Master
(3).(1)和(2)超越PHP Programmer的要求了,會更好,不會沒關系.檢查有沒有少加索引
(4).寫高效的SQL語句,看看有沒有寫低效的SQL語句,比如生成笛卡爾積的全連接啊,大量的Group By和order by,沒有limit等等.必要的時候,把資料庫邏輯封裝到DBMS端的存儲過程裡面.緩存查詢結果,explain每一個sql語句
(5).所得皆必須,只從資料庫取必需的數據,比如查詢某篇文章的評論數,select count(*) ... where article_id = ? 就可以了,不要先select * ... where article_id = ?然後msql_num_rows.
只傳送必須的SQL語句,比如修改文章的時候,如果用戶只修改了標題,那就update ... set title = ? where article_id = ?不要set content = ?(大文本)
(6).必要的時候用不同的存儲引擎.比如InnoDB可以減少死鎖.HEAP可以提高一個數量級的查詢速度

㈨ mysql資料庫怎麼優化,有幾方面的優化

我列舉幾個我熟悉的,
1,存儲引擎,根據應用選擇合適的引擎
2,索引
----這個就有很多文章了,具體需要你自己去了解
3,sql語句優化,查詢條件的選擇之類
4,mysql自身系統配置,需要針對應用去定製
5,表的選擇,臨時表,或者分區表,也需要針對應用的情況去選擇使用

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:600
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:892
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:586
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:771
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:690
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:1017
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:261
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:120
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:809
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:719