計算機存儲器讀書速度
⑴ 計算機的存儲器讀寫速度比較
首先,CACHE是CPU的緩存,和CPU速度一致,用於平衡CPU和內存的速度差,是速度最快的
其次是RAM。因為內存儲存的是電腦的緩存,需要快速調用,速度必須快。比如ddr3 1333mhz內存的速度約是10.664GB/s.
然後首先,我先說一點,ROM和硬碟是一個東西。u盤和硬碟也是同一類東西。而且速度也不好比。例如,硬碟分為機械硬碟和固態硬碟,固態硬碟比機械硬碟快很多。
同時,u盤的傳輸速度除了和u盤自身有關外,還和傳輸介面有關,比如,usb3.1>usb3.0>usb2.0。
那麼我就把這兩個東西統一看為硬碟。目前世界上最快的消費級硬碟速度是威剛推出SSD,速度達3.2gb/s,自然賣的很貴。
u盤雖然自身速度跟硬碟沒啥區別,但是收到系統、介面之類的限制,u盤還是比硬碟要慢一點。
至於軟盤,你懂的。這玩意可以當紀念品了,速度慢地像蝸牛,內存小到裝不下現在的一個軟體。。。
綜合來說,速度應該是:CACHE>RAM>ROM或硬碟>u盤>軟盤
⑵ 計算機存儲器中,讀寫速度最快的是
磁帶存儲器的記錄方式主要以形成不同寫入電流波形的方式記錄,所以訪問速度最快。而且能驅動磁帶相對磁頭運動,用磁頭進行電磁轉換,在磁帶上順序地記錄或讀出數據。
磁帶存儲器可以通過磁帶控制器模型大型機所共享。磁帶存儲器可以處理最多4Gbps傳輸速度的光纖連接裝置——這是大型機光纖連通道連接專利。磁帶存儲器控制器也能夠支持磁碟驅動或者是光纖通道交換機多達4個標準的8Gbps傳輸速度的光纖通道連接。
(2)計算機存儲器讀書速度擴展閱讀:
磁帶驅動結構原理:
廣泛使用的磁帶機是快速啟動-停止式磁帶機。它由驅動輪和磁帶驅動機構、導帶機構和緩沖機構、磁頭、讀寫和驅動控制電路等組成。
磁帶機:以真空緩沖盒式磁帶機為例,磁帶從送料盤經過右側緩沖盒、磁頭、驅動輪、左側緩沖盒到磁帶盤。
讀和寫磁帶:磁帶在移動時與頭部接觸。當電流流過磁頭的線圈時,磁頭之間的間隙附近就會產生磁場,磁化磁帶上的一小塊區域。
數據組織:磁帶有開始標記(BOT)和結束標記(EOT),中間可以記住幾個文件。每個文件由1到一定數量的數據塊組成,兩個文件用一個頻帶標記分隔。
磁帶控制器:磁帶控制器可以連接多個磁帶機,控制磁帶機進行寫、讀、推進和後退文件、推進和後退數據塊等操作。
⑶ 內存正常讀取速度是多少硬碟讀取速度是多少
硬碟的讀取速度沒多大用處,一般機械硬碟用專業軟體測得的讀取速度在60-120MB/s。但這個數值沒多大用處,正常使用中是達不到這個速度的。
好比用U盤向電腦傳輸一部電影,若電腦USB介面是2.0的,U盤也是2.0的,那麼速度也就是10MB/S。若U盤是3.0的,那麼速度可達到25MB/S,當電腦和U盤介面都是3.0的,那麼速度更快,可到達45MB/S以上。以上數值本人親測。至於固態硬碟,就一句話,那是相當快。一般都在200MB/S以上。所以說硬碟讀取速度只能當參考。介面、文件類型等因素都會影響硬碟速度。
再說內存,平時所說的內存速度是指它的的存取速度,一般用存儲器存取時間和存儲周期來表示。存儲器存取時間(memory access time)又稱存儲器訪問時間,是指從啟動一次存儲器操作到完成該操作所經歷的時間。存儲周期(memory cycle time)指連續啟動兩次獨立的存儲器操作(例如連續兩次讀操作)所需間隔的最小時間。通常,存儲周期略大於存取時間,其差別與主存器的物理實現細節有關。
內存的速度一般用存取時間衡量,即每次與CPU間數據處理耗費的時間,以納秒(ns)為單位。目前大多數SDRAM內存晶元的存取時間為5、6、7、8或10ns。可以這么說,內存主頻越高,內存的速度越快。
⑷ 計算機不同存儲器讀取的速度大小是什麼 誰最快誰有最慢 排一下序
你好!
級CACHE最快,二級CACHE次之,然後是內存,最後是硬碟和移動存儲設備
如果對你有幫助,望採納。
⑸ 計算機的內儲存器比外儲存器的讀寫速度要快還是慢
計算機的內存儲器也就是所說的內存,
外存儲器也就是所說的硬碟,
內存的讀取速度要遠遠高於硬碟的讀取速度!
⑹ 幾種存儲器讀寫速度關系
存儲器大體分為兩種:只讀存儲器ROM和隨機存儲器RAM。ROM用得比較多的是NANDFLASH和NOR FLASH,寫入速度NAND比NOR快,讀取速度NOR比NAND快。隨機存儲器分為靜態RAM(SRAM)和動態RAM(DRAM),速度是SRAM>DDR3>DDR2>DDR>SDRAM.
⑺ 計算機的有關存儲器讀寫速度的排序
Cache、內存、光碟、硬碟。
首先,CACHE是CPU的緩存,和CPU速度一致,用於平衡CPU和內存的速度差,是速度最快的;其次是RAM。因為內存儲存的是電腦的緩存,需要快速調用,速度必須快。比如ddr3 1333mhz內存的速度約是10.664GB/s.
ROM和硬碟是一個東西。u盤和硬碟也是同一類東西。而且速度也不好比。例如,硬碟分為機械硬碟和固態硬碟,固態硬碟比機械硬碟快很多。
(7)計算機存儲器讀書速度擴展閱讀:
數據存儲器用於存放可隨時修改的數據。數據存儲器擴展使用隨機存儲器晶元,隨機存儲器簡稱RAM。對RAM可以進行讀/寫兩種操作,但RAM是易失性存儲器,斷電後所存信息消失。
按其工作方式,RAM又分為靜態和動態兩種。靜態RAM只要電源加電信息就能保存;而動態RAM使用的是動態存儲單元,需要不斷進行刷新以便周期性的再生才能保存信息。
⑻ 下列有關存儲器讀寫速度的排列,正確的是()
答案是B,Cache>RAM>硬碟>軟盤。
Cache:高速緩沖存儲器(Cache)是位於cpu和內存之間的存儲器,是一個讀寫速度比內存更快的存儲器,當cpu向內存中讀取或寫入數據的時候買這些數據也會存入Cache中。
當cup再需要這些數據的時候,就會直接去Cache中讀取,而不是內存中,當然,若需要的數據在Cache中沒有,cpu會再去內存中讀取。
RAM:隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存。
內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有4M/條、8M/條、16M/條等。
硬碟:傳輸速率(Data Transfer Rate)硬碟的數據傳輸率是指硬碟讀寫數據的速度,單位為兆位元組每秒(MB/s)。硬碟數據傳輸率又包括了內部數據傳輸率和外部數據傳輸率。
內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained Transfer Rate),它反映了硬碟緩沖區未用時的性能。內部傳輸率主要依賴於硬碟的旋轉速度。
外部傳輸率(External Transfer Rate)也稱為突發數據傳輸率(Burst Data Transfer Rate)或介面傳輸率,它標稱的是系統匯流排與硬碟緩沖區之間的數據傳輸率,外部數據傳輸率與硬碟介面類型和硬碟緩存的大小有關。
Fast ATA介面硬碟的最大外部傳輸率為16.6MB/s,而Ultra ATA介面的硬碟則達到33.3MB/s。
軟式磁碟驅動器則稱FDD,軟碟片是覆蓋磁性塗料的塑料片,用來儲存數據文件,磁碟片的容量有5.25」的1.2MB,3.5」的1.44MB。
(8)計算機存儲器讀書速度擴展閱讀:
選用基本原則:
1.內部存儲器與外部存儲器
當確定了存儲程序代碼和數據所需要的存儲空間之後,設計工程師將決定是採用內部存儲器還是外部存儲器。
通常情況下,內部存儲器的性價比最高但靈活性最低,因此設計工程師必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。
2.引導存儲器
在較大的微控制器系統或基於處理器的系統中,設計工程師可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。某些微控制器既有內部存儲器也有外部定址匯流排,在這種情況下,引導代碼將駐留在內部存儲器中,而操作代碼在外部存儲器中。
3.配置存儲器
對於現場可編程門陣列(FPGA)或片上系統(SoC),人們使用存儲器來存儲配置信息。這種存儲器必須是非易失性EPROM、EEPROM或快閃記憶體。
大多數情況下,FPGA採用SPI介面,但一些較老的器件仍採用FPGA串列介面。串列EEPROM或快閃記憶體器件最為常用,EPROM用得較少。
4.程序存儲器
所有帶處理器的系統都採用程序存儲器,但設計工程師必須決定這個存儲器是位於處理器內部還是外部。在做出了這個決策之後,設計工程師才能進一步確定存儲器的容量和類型。
在大多數嵌入式系統中,人們利用快閃記憶體存儲程序以便在線升級固件。代碼穩定的較老的應用系統仍可以使用ROM和OTP存儲器,但由於快閃記憶體的通用性,越來越多的應用系統正轉向快閃記憶體。
5.數據存儲器
與程序存儲器類似,數據存儲器可以位於微控制器內部,或者是外部器件,但這兩種情況存在一些差別。
有時微控制器內部包含SRAM(易失性)和EEPROM(非易失)兩種數據存儲器,但有時不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,設計工程師可以選擇外部的串列EEPROM或串列快閃記憶體器件。
當需要外部高速數據存儲器時,通常選擇並行SRAM並使用外部串列EEPROM器件來滿足對非易失性存儲器的要求。一些設計還將快閃記憶體器件用作程序存儲器,但保留一個扇區作為數據存儲區。這種方法可以降低成本、空間並提供非易失性數據存儲器。
針對非易失性存儲器要求,串列EEPROM器件支持I2C、SPI或微線(Microwire)通訊匯流排,而串列快閃記憶體通常使用SPI匯流排。由於寫入速度很快且帶有I2C和SPI串列介面,FRAM在一些系統中得到應用。
6.易失性和非易失性存儲器
存儲器可分成易失性存儲器或者非易失性存儲器,前者在斷電後將丟失數據,而後者在斷電後仍可保持數據。設計工程師有時將易失性存儲器與後備電池一起使用,使其表現猶如非易失性器件,但這可能比簡單地使用非易失性存儲器更加昂貴。
在有連續能量供給的系統中,易失性或非易失性存儲器都可以使用,但必須基於斷電的可能性做出最終決策。如果存儲器中的信息可以在電力恢復時從另一個信源中恢復出來,則可以使用易失性存儲器。
選擇易失性存儲器與電池一起使用的另一個原因是速度。盡管非易失存儲器件可以在斷電時保持數據,但寫入數據(一個位元組、頁或扇區)的時間較長。
7.串列存儲器和並行存儲器
在定義了應用系統之後,微控制器的選擇是決定選擇串列或並行存儲器的一個因素。對於較大的應用系統,微控制器通常沒有足夠大的內部存儲器,這時必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部的程序存儲器和數據存儲器也將是並行的。
較小的應用系統通常使用帶有內部存儲器但沒有外部地址匯流排的微控制器。如果需要額外的數據存儲器,外部串列存儲器件是最佳選擇。大多數情況下,這個額外的外部數據存儲器是非易失性的。
根據不同的設計,引導存儲器可以是串列也可以是並行的。如果微控制器沒有內部存儲器,並行的非易失性存儲器件對大多數應用系統而言是正確的選擇。但對一些高速應用,可以使用外部的非易失性串列存儲器件來引導微控制器,並允許主代碼存儲在內部或外部高速SRAM中。
8.EEPROM與快閃記憶體
存儲器技術的成熟使得RAM和ROM之間的界限變得很模糊,如今有一些類型的存儲器(如EEPROM和快閃記憶體)組合了兩者的特性。這些器件像RAM一樣進行讀寫,並像ROM一樣在斷電時保持數據,它們都可電擦除且可編程,但各自有它們優缺點。
從軟體角度看,獨立的EEPROM和快閃記憶體器件是類似的,兩者主要差別是EEPROM器件可以逐位元組地修改,而快閃記憶體器件只支持扇區擦除以及對被擦除單元的字、頁或扇區進行編程。
對快閃記憶體的重新編程還需要使用SRAM,因此它要求更長的時間內有更多的器件在工作,從而需要消耗更多的電池能量。設計工程師也必須確認在修改數據時有足夠容量的SRAM可用。
存儲器密度是決定選擇串列EEPROM或者快閃記憶體的另一個因素。市場上可用的獨立串列EEPROM器件的容量在128KB或以下,獨立快閃記憶體器件的容量在32KB或以上。
如果把多個器件級聯在一起,可以用串列EEPROM實現高於128KB的容量。很高的擦除/寫入耐久性要求促使設計工程師選擇EEPROM,因為典型的串列EEPROM可擦除/寫入100萬次。快閃記憶體一般可擦除/寫入1萬次,只有少數幾種器件能達到10萬次。
今天,大多數快閃記憶體器件的電壓范圍為2.7V到3.6V。如果不要求位元組定址能力或很高的擦除/寫入耐久性,在這個電壓范圍內的應用系統採用快閃記憶體,可以使成本相對較低。
9.EEPROM與FRAM
EEPROM和FRAM的設計參數類似,但FRAM的可讀寫次數非常高且寫入速度較快。然而通常情況下,用戶仍會選擇EEPROM而不是FRAM,其主要原因是成本(FRAM較為昂貴)、質量水平和供貨情況。設計工程師常常使用成本較低的串列EEPROM,除非耐久性或速度是強制性的系統要求。
DRAM和SRAM都是易失性存儲器,盡管這兩種類型的存儲器都可以用作程序存儲器和數據存儲器,但SRAM主要用於數據存儲器。DRAM與SRAM之間的主要差別是數據存儲的壽命。只要不斷電,SRAM就能保持其數據,但DRAM只有極短的數據壽命,通常為4毫秒左右。
與SRAM相比,DRAM似乎是毫無用處的,但位於微控制器內部的DRAM控制器使DRAM的性能表現與SRAM一樣。DRAM控制器在數據消失之前周期性地刷新所存儲的數據,所以存儲器的內容可以根據需要保持長時間。
由於比特成本低,DRAM通常用作程序存儲器,所以有龐大存儲要求的應用可以從DRAM獲益。它的最大缺點是速度慢,但計算機系統使用高速SRAM作為高速緩沖存儲器來彌補DRAM的速度缺陷。
10、雲儲存
和傳統存儲相比,雲存儲系統具有如下優勢:優異性能支持高並發、帶寬飽和利用。雲存儲系統將控制流和數據流分離,數據訪問時多個存儲伺服器同時對外提供服務,實現高並發訪問。
⑼ 以下存儲器中讀寫速度最快的是
你是問存儲器中讀寫速度最快的是哪種是嗎?是內存儲器。
存儲器中讀寫速度最快的是內存儲器,計算機中的存儲器採用層次結構,按照速度快慢排列依次是內存儲器、高速緩沖存儲器、計算機的主存和大容量磁碟,其中內存一般分為RAM隨機存取存儲器和ROM只讀存儲器。
存儲器是一種利用半導體、磁性介質等技術製成的存儲數據的電子設備。
⑽ 計算機存儲器中,讀寫速度最快的是
通常來說,內存速度最快,但不排除特殊情況,比如nvme固態硬碟要比幾年前ddr2內存還快,不過nvme固態延遲ms級,內存延遲是nm級,固態還是不能取代內存的。
其次磁帶存儲器的記錄方式主要以形成不同寫入電流波形的方式記錄,所以訪問速度最快。而且能驅動磁帶相對磁頭運動,用磁頭進行電磁轉換,在磁帶上順序地記錄或讀出數據。