當前位置:首頁 » 存儲配置 » hadoop列存儲

hadoop列存儲

發布時間: 2023-01-30 23:45:06

㈠ Hadoop生態系統-新手快速入門(含HDFS、HBase系統架構)

Hadoop是一個由Apache基金會所開發的分布式系統基礎架構。

用戶可以在不了解分布式底層細節的情況下,開發分布式程序。充分利用集群的威力進行高速運算和存儲

Hadoop實現了一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。HDFS有高容錯性的特點,並且設計用來部署在低廉的(low-cost)硬體上;而且它提供高吞吐量(high throughput)來訪問應用程序的數據,適合那些有著超大數據集(large data set)的應用程序。

Hadoop的框架最核心的設計就是:HDFS和MapRece。HDFS為海量的數據提供了存儲,而MapRece則為海量的數據提供了計算。

廣義的Hadoop,一般稱為Hadoop生態系統,如下所示。

Hadoop生態系統中這些軟體的作用:

HDFS 採用了主從(Master/Slave)結構模型,一個HDFS集群包括一個名稱節點(NameNode)和若干個數據節點(DataNode)。

HDFS採用Java語言開發,因此任何支持JVM的機器都可以部署名稱節點和數據節點。

在配置好Hadoop 集群之後,可以通過瀏覽器訪問 http://[NameNodeIP]:9870,查詢HDFS文件系統。通過該Web界面,可以查看當前文件系統中各個節點的分布信息。

HBase系統架構如下所示,包括客戶端、Zookeeper伺服器、Master主伺服器、Region伺服器。一般而言,HBase會採用HDFS作為底層數據存儲。

在HBase伺服器集群中,包含了一個Master和多個Region伺服器,Master是HBase集群的「總管」,它必須知道Region伺服器的狀態。

HBase中可以啟動多個Master,但是Zookeeper 可以幫助選舉出一個Master 作為集群的總管,並保證在任何時刻總有唯一一個Master在運行,這樣可以避免Master單點失效的問題。

Region伺服器是HBase中最核心的模塊,負責維護分配給自己的Region,並響應用戶的讀寫請求。

Store是Region伺服器的核心。每個Store對應了表中的一個列族的存儲。每一個Store包含了一個MemStore緩存和若干個StoreFile文件。

HBase採用HLog來保證系統發生故障時,能夠恢復到正確的狀態。HLog是磁碟上面的記錄文件,它記錄著所有的更新操作。

HBase系統為每個Region伺服器配置了一個HLog文件,它是一種預寫式日誌(Write Ahead Log),也就是說,用戶更新數據必須首先被記入日誌後,才能寫入MemStore緩存。

此外,Pig和Hive還為HBase提供了高層語言支持,使得在HBase上進行數據統計處理變的非常簡單。 Sqoop則為HBase提供了方便的RDBMS數據導入功能,使得傳統資料庫數據向HBase中遷移變的非常方便。

注意:Hadoop 安裝完成之後,只包含HDFS和MapRece,並不含HBase,因此需要在Hadoop 之上繼續安裝HBase。

㈡ hadoop項目孵化時主要包括哪兩個項目

Hadoop的兩個核心組成:
HDFS:分布式文件系統,存儲海量的數據。
MapRece:並行處理框架,實現任務分解和調度。
Hadoop由以下幾個項目構成
1、HadoopCommon:Hadoop體系最底層的一個模塊,為Hadoop各子項目提供各種工具,如:配置文件和日誌操作等。
2、HDFS:分布式文件系統,提供高吞吐量的應用程序數據訪問,對外部客戶機而言,HDFS就像一個傳統的分級文件系統。可以創建、刪除、移動或重命名文件,等等。但是HDFS的架構是基於一組特定的節點構建的,這是由它自身的特點決定的。這些節點包括NameNode(僅一個),它在HDFS內部提供元數據服務;DataNode,它為HDFS提供存儲塊。
由於僅存在一個NameNode,因此這是HDFS的一個缺點(單點失敗)。存儲在HDFS中的文件被分成塊,然後將這些塊復制到多個計算機中(DataNode)。這與傳統的RAID架構大不相同。塊的大小(通常為64MB)和復制的塊數量在創建文件時由客戶機決定。NameNode可以控制所有文件操作。HDFS內部的所有通信都基於標準的TCP/IP協議。
3、MapRece:一個分布式海量數據處理的軟體框架集計算集群。
4、Avro:dougcutting主持的RPC項目,主要負責數據的序列化。有點類似Google的protobuf和Facebook的thrift。avro用來做以後hadoop的RPC,使hadoop的RPC模塊通信速度更快、數據結構更緊湊。
5、Hive:類似CloudBase,也是基於hadoop分布式計算平台上的提供datawarehouse的sql功能的一套軟體。使得存儲在hadoop裡面的海量數據的匯總,即席查詢簡單化。hive提供了一套QL的查詢語言,以sql為基礎,使用起來很方便。
6、HBase:基於HadoopDistributedFileSystem,是一個開源的,基於列存儲模型的可擴展的分布式資料庫,支持大型表的存儲結構化數據。
7、Pig:是一個並行計算的高級的數據流語言和執行框架,SQL-like語言,是在MapRece上構建的一種高級查詢語言,把一些運算編譯進MapRece模型的Map和Rece中,並且用戶可以定義自己的功能。
8、ZooKeeper:Google的Chubby一個開源的實現。它是一個針對大型分布式系統的可靠協調系統,提供的功能包括:配置維護、名字服務、分布式同步、組服務等。ZooKeeper的目標就是封裝好復雜易出錯的關鍵服務,將簡單易用的介面和性能高效、功能穩定的系統提供給用戶。
9、Chukwa:一個管理大型分布式系統的數據採集系統由yahoo貢獻。
10、Cassandra:無單點故障的可擴展的多主資料庫。
11、Mahout:一個可擴展的機器學習和數據挖掘庫。

㈢ hadoop文件格式和壓縮

Hadoop中的文件格式大致上分為面向行和面向列兩類:

面向行:TextFile、SequenceFile、MapFile、Avro Datafile

二進制格式文件大小比文本文件大。

生產環境常用,作為原始表的存儲格式,會佔用更多磁碟資源,對它的 解析開銷一般會比二進制格式高 幾十倍以上。

Hadoop API 提供的一種二進制文件,它將數據以<key,value>的形式序列化到文件中。這種二進制文件內部使用Hadoop 的標準的Writable 介面實現序列化和反序列化。它與Hadoop API中的MapFile 是互相兼容的。

MapFile即為排序後的SequeneceFile,它會額外生成一個索引文件提供按鍵的查找。文件不支持復寫操作,不能向已存在的SequenceFile(MapFile)追加存儲記錄,在執行文件寫操作的時候,該文件是不可讀取的。

Avro是一種用於支持數據密集型的二進制文件格式。它的文件格式更為緊湊,若要讀取大量數據時,Avro能夠提供更好的序列化和反序列化性能。並且Avro數據文件天生是帶Schema定義的,所以它不需要開發者在API 級別實現自己的Writable對象。最近多個Hadoop 子項目都支持Avro 數據格式,如Pig 、Hive、Flume、Sqoop和Hcatalog。

面向列:Parquet 、RCFile、ORCFile

RCFile是Hive推出的一種專門面向列的數據格式。 它遵循「先按列劃分,再垂直劃分」的設計理念。當查詢過程中,針對它並不關心的列時,它會在IO上跳過這些列。

ORCFile (Optimized Record Columnar File)提供了一種比RCFile更加高效的文件格式。其內部將數據劃分為默認大小為250M的Stripe。每個Stripe包括索引、數據和Footer。索引存儲每一列的最大最小值,以及列中每一行的位置。

Parquet 是一種支持嵌套結構的列式存儲格式。Parquet 的存儲模型主要由行組(Row Group)、列塊(Column Chuck)、頁(Page)組成。

1、行組,Row Group:Parquet 在水平方向上將數據劃分為行組,默認行組大小與 HDFS Block 塊大小對齊,Parquet 保證一個行組會被一個 Mapper 處理。

2、列塊,Column Chunk:行組中每一列保存在一個列塊中,一個列塊具有相同的數據類型,不同的列塊可以使用不同的壓縮。

3、頁,Page:Parquet 是頁存儲方式,每一個列塊包含多個頁,一個頁是最小的編碼的單位,同一列塊的不同頁可以使用不同的編碼方式。

一般原始表數據使用文本格式存儲,其他的都是列式存儲。

目前在Hadoop中常用的幾種壓縮格式:lzo,gzip,snappy,bzip2,主要特性對比如下:

其性能對比如下:

2.1 lzo

hadoop中最流行的壓縮格式,壓縮/解壓速度也比較快,合理的壓縮率,支持split。適用於較大文本的處理。

對於lzo壓縮,常用的有LzoCodec和lzopCodec,可以對sequenceFile和TextFile進行壓縮。對TextFile壓縮後,mapred對壓縮後的文件默認是不能夠進行split操作,需要對該lzo壓縮文件進行index操作,生成lzo.index文件,map操作才可以進行split。如果設置LzoCodec,那麼就生成.lzo後綴的文件,可以用LzoIndexer 進行支持split的index計算,如果設置LzopCodec,那麼生成.lzo_deflate後綴的文件,不支持建立index。

㈣ 開源資料庫有哪些

MSSQL伺服器、MySQL、Oracle、PostgreSQL、MongoDB等等。眾所周知,其中MySQL是目前使用最廣泛最好的免費開源資料庫,此外,還有一些你不知道或者沒用過但又非常出色的開源資料庫,例如PostgreSQL、MongoDB、HBase、Cassandra、Couchbase、Neo4j、Riak、Redis、Firebird等。

㈤ Hadoop到底是什麼玩意

Hadoop到底是個啥?
答:Hadoop是基於廉價設備利用集群的威力對海量數據進行安全存儲和高效計算的分布式存儲和分析框架,Hadoop本身是一個龐大的項目家族,其核心 家族或者底層是HDFS和MapRece,HDFS和MapRece分別用來實現對海量數據的存儲和分析,其它的項目,例如Hive、HBase 等都是基於HDFS和MapRece,是為了解決特定類型的大數據處理問題而提出的子項目,使用Hive、HBase等子項目可以在更高的抽象的基礎上更簡單的編寫分布式大數據處理程序。Hadoop的其它子項目還包括Common, Avro, Pig, ZooKeeper, Sqoop, Oozie 等,隨著時間的推移一些新的子項目會被加入進來,一些關注度不高的項目會被移除Hadoop家族,所以Hadoop是一個充滿活力的系統。
Apache Hadoop: 是Apache開源組織的一個分布式計算開源框架,提供了一個分布式文件系統子項目(HDFS)和支持MapRece分布式計算的軟體架構。
Apache Hive: 是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,通過類SQL語句快速實現簡單的MapRece統計,不必開發專門的MapRece應用,十分適合數據倉庫的統計分析。
ApachePig: 是一個基於Hadoop的大規模數據分析工具,它提供的SQL-LIKE語言叫Pig Latin,該語言的編譯器會把類SQL的數據分析請求轉換為一系列經過優化處理的MapRece運算。
ApacheHBase: 是一個高可靠性、高性能、面向列、可伸縮的分布式存儲系統,利用HBase技術可在廉價PC Server上搭建起大規模結構化存儲集群。
Apache Sqoop: 是一個用來將Hadoop和關系型資料庫中的數據相互轉移的工具,可以將一個關系型資料庫(MySQL ,Oracle ,Postgres等)中的數據導進到Hadoop的HDFS中,也可以將HDFS的數據導進到關系型資料庫中。
Apache Zookeeper: 是一個為分布式應用所設計的分布的、開源的協調服務,它主要是用來解決分布式應用中經常遇到的一些數據管理問題,簡化分布式應用協調及其管理的難度,提供高性能的分布式服務 ApacheMahout:是基於Hadoop的機器學習和數據挖掘的一個分布式框架。Mahout用MapRece實現了部分數據挖掘演算法,解決了並行挖掘的問題。
ApacheCassandra:是一套開源分布式NoSQL資料庫系統。它最初由Facebook開發,用於儲存簡單格式數據,集Google BigTable的數據模型與AmazonDynamo的完全分布式的架構於一身 Apache Avro: 是一個數據序列化系統,設計用於支持數據密集型,大批量數據交換的應用。Avro是新的數據序列化格式與傳輸工具,將逐步取代Hadoop原有的IPC機制 ApacheAmbari: 是一種基於Web的工具,支持Hadoop集群的供應、管理和監控。
ApacheChukwa: 是一個開源的用於監控大型分布式系統的數據收集系統,它可以將各種各樣類型的數據收集成適合 Hadoop 處理的文件保存在 HDFS 中供Hadoop 進行各種 MapRece 操作。
ApacheHama: 是一個基於HDFS的BSP(Bulk Synchronous Parallel)並行計算框架, Hama可用於包括圖、矩陣和網路演算法在內的大規模、大數據計算。
ApacheFlume: 是一個分布的、可靠的、高可用的海量日誌聚合的系統,可用於日誌數據收集,日誌數據處理,日誌數據傳輸。
ApacheGiraph: 是一個可伸縮的分布式迭代圖處理系統, 基於Hadoop平台,靈感來自 BSP (bulk synchronous parallel) 和Google 的 Pregel。
ApacheOozie: 是一個工作流引擎伺服器, 用於管理和協調運行在Hadoop平台上(HDFS、Pig和MapRece)的任務。
ApacheCrunch: 是基於Google的FlumeJava庫編寫的Java庫,用於創建MapRece程序。與Hive,Pig類似,Crunch提供了用於實現如連接數據、執行聚合和排序記錄等常見任務的模式庫 ApacheWhirr: 是一套運行於雲服務的類庫(包括Hadoop),可提供高度的互補性。Whirr學支持Amazon EC2和Rackspace的服務。
ApacheBigtop: 是一個對Hadoop及其周邊生態進行打包,分發和測試的工具。
ApacheHCatalog: 是基於Hadoop的數據表和存儲管理,實現中央的元數據和模式管理,跨越Hadoop和RDBMS,利用Pig和Hive提供關系視圖。
ClouderaHue: 是一個基於WEB的監控和管理系統,實現對HDFS,MapRece/YARN, HBase, Hive, Pig的web化操作和管理。

㈥ 常見的基於列存儲的大數據資料庫有哪些

目前大數據存儲有兩種方案可供選擇:行存儲和列存儲。業界對兩種存儲方案有很多爭持,集中焦點是:誰能夠更有效地處理海量數據,且兼顧安全、可靠、完整性。從目前發展情況看,關系資料庫已經不適應這種巨大的存儲量和計算要求,基本是淘汰出局。在已知的幾種大數據處理軟體中,Hadoop的HBase採用列存儲,MongoDB是文檔型的行存儲,Lexst是二進制型的行存儲。在這里,我不討論這些軟體的技術和優缺點,只圍繞機械磁碟的物理特質,分析行存儲和列存儲的存儲特點,以及由此產生的一些問題和解決辦法。

㈦ 試比較hadoop中的資料庫hbase和傳統關系資料庫的不同

答:主要體現在以下幾個方面:1.數據類型。關系資料庫採用關系模型,具有豐富的數據類型和儲存方式。HBase則採用了更加簡單的數據模型,它把數據儲存為未經解釋的字元串,用戶可以把不同格式的結構化數據和非結構化數據都序列化成字元串保存到HBase中,用戶需要自己編寫程序把字元串解析成不同的數據類型。
2.數據操作。關系資料庫中包含了豐富的操作,如插入、刪除、更新、查詢等,其中會涉及復雜的多表連接,通常是藉助多個表之間的主外鍵關聯來實現的。HBase操作則不存在復雜的表與表之間的關系,只有簡單的插入、查詢、刪除、清空等,因為HBase在設計上就避免了復雜的表與表之間的關系,通常只採用單表的主鍵查詢,所以它無法實現像關系資料庫中那樣的表與表之間的連接操作。
3.存儲模式。關系資料庫是基於行模式存儲的,元祖或行會被連續地存儲在磁碟頁中。在讀取數據時,需要順序掃描每個元組,然後從中篩選出查詢所需要的屬性。如果每個元組只有少量屬性的值對於查詢是有用的,那麼基於行模式存儲就會浪費許多磁碟空間和內存帶寬。HBase是基於列存儲的,每個列族都由幾個文件保存,不同列族的文件是分離的,它的優點是:可以降低I/O開銷,支持大量並發用戶查詢,因為僅需要處理可以回答這些查詢的列,而不是處理與查詢無關的大量數據行;同一個列族中的數據會被一起進行壓縮,由於同一列族內的數據相似度較高,因此可以獲得較高的數據壓縮比。
4.數據索引。關系資料庫通常可以針對不同列構建復雜的多個索引,以提高數據訪問性能。與關系資料庫不同的是,HBase只有一個索引——行鍵,通過巧妙的設計,HBase中所有訪問方法,或者通過行鍵訪問,或者通過行鍵掃描,從而使整個系統不會慢下來。由於HBase位於Hadoop框架之上,因此可以使用Hadoop MapRece來快速、高效地生成索引表。
6.數據維護。在關系資料庫中,更新操作會用最新的當前值去替換記錄中原來的舊值,舊值被覆蓋後就不會存在。而在HBase中執行更新操作時,並不會刪除數據舊的版本,而是生成一個新的版本,舊有的版本仍舊保留。
7.可伸縮性。關系資料庫很難實現橫向擴展,縱向擴展的空間也比較有限。相反,HBase和BigTable這些分布式資料庫就是為了實現靈活的水平擴展而開發的,因此能夠輕易地通過在集群中增加或者減少硬體數量來實現性能的伸縮。
但是,相對於關系資料庫來說,HBase也有自身的局限性,如HBase不支持事務,因此無法實現跨行的原子性。
註:本來也想來問這個問題,然後復制一下的。結果找不到,只好自己手打了,麻煩復制拿去用的同學點下贊唄。
2019.3.27-16:40

㈧ Hadoop如何處理非結構化數據

非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖像、聲音、影視、超媒體等信息)。

面對海量非結構數據存儲,杉岩海量對象存儲MOS,提供完整解決方案,採用去中心化、分布式技術架構,支持百億級文件及EB級容量存儲,具備高效的數據檢索、智能化標簽和分析能力,輕松應對大數據和雲時代的存儲挑戰,為企業發展提供智能決策。

熱點內容
解釋一下密碼格式是什麼 發布:2025-07-18 02:35:26 瀏覽:943
8噸橋在配置怎麼看 發布:2025-07-18 02:20:03 瀏覽:379
伺服器防禦怎麼看 發布:2025-07-18 02:19:54 瀏覽:397
idlj編譯idl文件 發布:2025-07-18 02:14:47 瀏覽:353
國外代理伺服器ip地址和埠 發布:2025-07-18 02:12:44 瀏覽:721
將個人電腦改雲桌面伺服器 發布:2025-07-18 02:12:31 瀏覽:759
加密機進程 發布:2025-07-18 02:08:34 瀏覽:242
光遇源碼 發布:2025-07-18 01:36:52 瀏覽:610
一克拉演算法 發布:2025-07-18 01:36:16 瀏覽:882
sql的標准 發布:2025-07-18 01:31:19 瀏覽:419