當前位置:首頁 » 存儲配置 » 數據存儲應用技術

數據存儲應用技術

發布時間: 2023-02-12 07:50:19

㈠ 攀登比珠穆朗瑪更高的山峰,數據存儲技術的突破之路

文: 科技 商業 於洪濤


在物理世界,山峰是自然力量的象徵;而在數字世界裡,數據則是智慧力量的來源。

或許正是因為如此,華為將其聚焦在數據基礎技術的科研大獎命名為Olympus Mons,即奧林帕斯大獎,專門用於重獎那些在數據存儲領域實現技術突破的科研工作者。

設立獎項只是一種形式。在奧林帕斯大獎的背後,是華為通過匯聚產學研各方能力,來推動數據技術實現突破性發展的雄心,從而為數字經濟發展提供更好的數據基礎設施。

隨著數字化時代的到來,數據的價值越來越突出,正在日益成為國家、企業、甚至個人的核心資產。

與傳統經濟相比,數字經濟的本質就是數據的流通,數據也成為智能 社會 的主要生產要素。IDC的調研顯示,2020年全球共創造了59ZB的數據,到2025年則將達到163ZB。

如此巨量的數據資產,需要經過數據採集、數據存儲、數據分析等流程才能產生價值,其中數據存儲無疑是基礎。在數據中心裡,存儲也與計算和網路一道,成為關鍵基礎設施,為整個數字化進程提供支持。

在數據量高速成長的同時,數據的形態也日益多樣化,視頻、圖片、音頻等非結構化數據已經成為數據的主體。這些復雜的數據要想充分發揮價值,就需要更加高效的數據存儲和數據管理。

有統計顯示,如今只有2%的數據被保存,保存下來的數據也只有10%得到分析利用。華為數據存儲與機器視覺產品線總裁周躍峰介紹說,數據在企業數字化轉型中扮演著越來越重要的角色,然而企業卻面臨海量數據存不下、流不動、管不好的問題。

為了滿足客戶日益增長的數據存儲需求, 華為主張構建端到端的數據能力,包括計算、存儲、利用和AI等能力,讓數據在全生命周期內實現每比特價值最大,每比特成本最優。

華為的努力,已經收到了成效,如今越來越多的政企使用華為的數據存儲解決方案,來實現對數據資產的管理。

甘肅敦煌研究院,正在利用華為的海量存儲解決方案,通過 計算機技術和數字圖像技術,實現敦煌石窟文物的永久保存、永續利用。

然而,整個敦煌莫高窟擁有735個洞窟、4.5萬平方米壁畫、2415尊泥質彩塑,要把這么多文物數字化,達成構建數字敦煌博物館的目標,意味著需要大量的投資和海量的存儲設備。 顯然,要想解決這一問題,僅靠華為自身的努力還不夠,而需要各個方面的共同參與,通過打造產業技術生態,來實現存儲技術的新突破。這也正是華為設立「奧林帕斯獎」的初衷。

據了解,華為「奧林帕斯獎」,每年都聚焦於數據領域的兩個主要技術難題來尋求解決方案。在去年底的全球數據存儲教授論壇上,第二屆的「2021年奧林帕斯懸紅」兩大難題已經確定:一是構建每比特極致性價比的數據存儲,二是實現下一代存儲產業根技術突破。對於每個難題,華為都給出了高達100萬元的懸紅,

華為希望通過「奧林帕斯獎」的設立,與學術界在 Cloud-Oriented多雲存儲服務、Data-Centric新型數據應用存儲系統、AI-Driven存儲軟體架構、創新體系架構等技術方向共同攻堅,構築更好的數據存儲系統。

我們都知道,妨礙電動 汽車 推廣普及的主要制約因素是電池的能量密度,其決定了電動 汽車 的可用性。在數據中心裡,數據的存儲密度則將成為未來的核心挑戰,決定著我們智能 社會 的成色。

科學家們已經明確了下一步的發展目標:在有限的資源下實現100x性能密度和100x容量密度的數據存儲。要實現存儲能力的提升,壓縮演算法是核心技術之一,可以降低 數據的存儲成本,幫助用戶緩解數據規模爆炸性增長帶來的成本壓力。

然而,作為存儲技術中的重磅難題,壓縮演算法多年來未有突出成果。

為了突破壓縮演算法面臨的瓶頸,激發數據壓縮領域的活力,自2020年起,華為與莫斯科國立大學合作,舉辦全球數據壓縮大賽,以促進數據壓縮根技術的研究。

今年的第二屆全球數據壓縮大賽,邀請了壓縮領域享有盛譽的技術專家擔任評委;使用電子顯微鏡、遙感等高性能計算數據,更貼近前沿、更貼近實際場景。大賽設計了五種類型的數據集(賽事項目):定量數據壓縮、定性數據壓縮、混合數據壓縮、小塊數據壓縮和熵編碼優化。

同時,大賽還增設了面向高校學生、難度相對較小的編碼演算法優化項目,以吸引更多校園演算法高手參與比賽。在獎項設置方面,進一步體現多維激勵,增設領先獎、特等獎和學生參與獎。

本屆數據壓縮大賽,已於6月15日正式開賽,接收參賽作品截止到11月底,將於12月底公布獲獎結果。截至7月中旬,開賽僅1個月大賽組委會就已經收到了來自全球近80個報名申請。


伴隨著奧林帕斯大獎和全球數據壓縮大賽相繼進入第二屆,「奧林帕斯」已經成為華為數據存儲正在著力打造的新品牌,專門用來加強產學研合作,聯合學界一起推動數據存儲產業的進步。

從第一屆奧林帕斯大獎得主那裡,我們已經看到科研界在數據技術創新領域的突破。

獲得 百萬懸紅大獎的清華大學舒繼武老師團隊的「持久性內存存儲系統構建與關鍵技術」, 創新地提出了持久性內存文件系統與鍵值存儲的設計方法和分布式持久性共享內存框架,攻克了其數據結構、內存管理、一致性與安全等方面的一系列難題,解決了基於新型內存介質的高效數據存儲問題。

此外,上海交通大學的陳榕團隊的 「基於新型異構硬體的高效數據處理系統」, 華中 科技 大學的馮丹團隊的 「NVM(新型非易失存儲)高效可靠技術」,也具有較高的創新性和先進性, 具備產業價值和應用前景。

同樣,在第一屆 全球數據壓縮大賽上,也涌現出了很多令人矚目的成果。

比如獲獎選手Peter Thamm設計的pglz演算法在壓縮率和性能上,打破了快速壓縮演算法的一般認知,指引了壓縮演算法優化方向;Konstantinos Agiannis的參賽演算法,在文本場景測試中的壓縮率和壓縮性能,均超過業界公認的標桿演算法;Andreas Debski的快速圖像壓縮演算法,達到了業界公認標桿演算法120%的壓縮率,展現了深厚的圖像壓縮演算法功底。

過去一年的成功,也讓我們對今年的 「奧林帕斯」有了更高的期待。對這個太陽系最高峰的攀登,意味著整個數據存儲技術領域的參與者,首次能夠團結一致,共同牽引基礎理論研究方向,突破關鍵技術難題,加速科研成果產業化,實現產學研合作共贏。

在此進程中,華為一方面發揮了產業引領者的角色,大力推動產學研的合作進程;另一方面也積極投身其中,通過 Data Fabric、智能存儲、內存型存儲、數據縮減、視頻存儲等五大創新實驗室,通過4000多名研發工程師的協同努力,圍繞下一代存儲的介質、網路、架構和管理等進行系統化創新。

我們也有理由相信,通過全球、全領域的協同創新,我們一定能夠迎來數據存儲技術的突破,通過技術重構實現更好的數據存儲效能,讓全世界共享數字技術紅利,進而推動千行百業的智能化升級。

㈡ 大數據的核心技術有哪些

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等。
1、數據採集與預處理:FlumeNG實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據;Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。
2、數據存儲:Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。
3、數據清洗:MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算。
4、數據查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供HQL(HiveSQL)查詢功能。Spark啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。
5、數據可視化:對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。

㈢ 開展微型數據存儲技術創新研發搶占未來大數據存儲技術高地的建議

我國數據存儲核心技術長期落後,大數據中心按照傳統的 科技 房地產的思路將面臨資源約束。為了防止我國存儲技術「卡脖子」,節省未來海量數據存儲佔地空間,系統化整合資源解決當前中國大數據存儲技術產品的容量問題,建議國家立項 開展微型數據存儲技術創新研發

我國數據儲存的現狀和面臨的問題

計算機數據存儲技術是信息技術應用的核心。一切計算機應用數據都需要由物理設備來存儲,以便計算機系統進行讀寫等處理,數據應用與數據存儲恰似樹干與樹根的密切關系。伴隨著信息技術應用的持續高速發展,可以預見未來的數據量必將呈現爆炸式增長,隨之而來的海量數據存儲瓶頸問題必然日趨嚴重,加劇著數據存儲領域長期面臨的容量、安全、性能、擴充、維護、災備、監管等諸多挑戰。其中,容量困境,首當其沖。

當前痛點。 為了滿足數據存儲容量日益增長的需求,大數據存儲中心建設必不可少。放眼當下全國各地的大數據存儲中心建設,由於數據存儲基礎核心技術缺位,流行的模式是不可持續的「 科技 房地產」,即單純拓展佔地面積蓋樓建設數據中心,進而耗費寶貴自然資源。目前我國城市監控視頻圖像數據受限於數據中心存儲容量空間,一般只能保留一個月左右,相關的數據應用嚴重受制。

應用基石。 底層數據存儲是信息產業發展的基石,數據存儲技術產品是信息應用系統的架構基礎,也是我國的關鍵行業技術短板。有效的數據存儲技術產品涉及到所有信息技術應用場景:人工智慧,信息安全,智慧城市,大數據,雲計算,區塊鏈,城市大腦,雪亮工程,城市管理視頻監控,醫學影像識別,等等。

嚴峻局面。 追溯信息技術百年來的發展軌跡,中國在數據存儲基礎技術領域的貢獻幾乎為零。國內數據存儲行業主要擅長於市場側的商業應用創新,數據存儲底層管理的核心技術研發嚴重依賴國外的開源開放。缺乏基礎研發梯隊,沒有關鍵理論 探索 ;沿襲陳舊的發展思路,習於外購器件設備;底層技術積累短缺,核心創新能力薄弱;嚴峻的局面至今沒有重大改變。

危情險勢。 中國在核心存儲產品、底層支撐技術、商業應用理念上長期跟跑,遭受外部勢力釜底抽薪式的「存儲底層關鍵核心技術精準打擊」的隱患和風險極大。面對復雜多變的國際環境,一旦遭遇卡脖子,如外購存儲產品斷貨或核心技術交流封鎖,舉國上下所有涉及信息技術應用的行業領域都必然窒息。從而直接降低相關產業迭代發展速度,掣肘 社會 前進步伐,削弱國家治理能力,進而危及影響到國家的政治和 社會 穩定。

時不我待。 我們需要立即行動起來,通過立項開展微型數據存儲技術創新研發,凝聚國內外數據存儲領域資源力量,構建數據存儲專業核心技術團隊;從研發軟體定義的存儲(數據去重)技術產品入手,填補國內技術產品領域空白;啟動研發微型化(原子級)數據存儲設備,搶占未來數據存儲領域的制高點。這項舉措也是解除我國數據存儲技術產品創新研發「卡脖子」危機的最佳途徑。

開展微型數據存儲技術創新研發的思路

我國應抓住當前數據應用驅動信息技術升級換代的大數據發展 歷史 契機,凝聚國內外資源力量,構建中國數據存儲專業核心技術團隊。近期:研發部署模塊化數據去重技術產品,壓縮海量數據存儲空間需求,填補國內底層數據存儲管理技術空白。遠期:啟動研發微型數據存儲設備,搶占未來數據存儲技術領域的制高點。

從開展微型數據存儲技術創新研發入手,聚焦國際存儲技術領域的戰略性前沿技術趨勢;聯手科研院所、高等院校、生產企業、大型用戶的資源,建設國家級核心技術團隊;積極引進/培養數據存儲技術人才,研發自主可控系列產品。

1.近期跟蹤行業動態

對標國際頂級數據存儲技術產品,砥礪學習底層模塊級數據存儲去重技術,壓縮海量數據存儲空間需求,實現自主可控國產數據存儲技術管理軟體產品的商務應用。基本原理是首先識別出重復的數據模塊,然後優化存儲多個重復數據模塊中的單一模塊,以及同其它重復模塊的鏈接關系。進而減少企業級客戶存儲數據所需的物理空間佔有量,降低采購部署數據存儲設備的增量。

2.遠期重點突出推進

探索 下一代數據存儲技術,整合跨學科資源啟動開展研發微型存儲器,力圖將現有基於磁碟/光碟/磁帶的計算機數據存儲器,轉化為未來基於原子/電子運動狀態的微型化數字信息採集與存取機制。其原理是將現在耗費數百萬個原子的材料介質所表徵的一位「0」或「1」二進制計算機數據,試圖由單個原子狀態變化來表徵。於是,可以將現有數據存儲設備體積縮小數十萬乃至百萬倍,最終將佔地約足球場面積的大數據存儲倉庫縮小為攜帶型器件。

3.研發工作開展建議

開展微型數據存儲技術創新研發應該建設成為國內領先、國際一流的數據存儲技術研究機構、產業孵化溫室、以及人才培養基地。

延攬數據存儲技術專家領銜擔綱咨詢顧問。全球招聘在世界頂級數據存儲公司工作多年的業界精英加盟指導。

構建中國數據存儲技術研發團隊。採用引進師資/開設培訓課程等有效方式,積累培育國內數據存儲技術力量。

結盟矽谷存儲技術研究院。依託美國矽谷地區的數據存儲實體公司,共享數據存儲底層技術知識。

注冊成立企業運營機構。開發軟體定義存儲(數據去重)技術產品,服務數據用戶市場,遵循商務運作規律。

融資涵蓋多種基金渠道。申報獲取國家重大專項基礎項目研發資金,吸引專業投資基金加盟。首期投資約需10億元人民幣(參考國際相關工程估值:美國IBM公司同類項目投資約600億美元/10年)。

推動微型數據存儲技術創新研發的建議

我國在開展新型基礎設施建設的同時,應當抓住當前數據計算應用驅動信息技術升級換代的大數據發展 歷史 契機,建立數據存儲技術的自主知識產權體系,填補國內空白,保障數字中國建設長遠規劃實施,推進國產數據存儲產品崛起,為相關產業發展鋪路。

2.建議遠期緊跟世界主流研發創新步伐,聚焦研發原子級微型化數據存儲技術產品(2020-2040年),在2040年前研發出原子級大數據存儲技術,並逐步實現產業化。

3.建議將微型化數據存儲技術創新作為國家戰略。搭建政產學研用共建共治共享的中國數據存儲技術聯合創新平台,建設國家級重點實驗室。依託科研院所/高等院校/相關企業,奠定從微型數據存儲理論、硬體設計、軟體開發、結構設計、系統集成等一整套原子級微型數據存儲技術研發工作的基礎。

4.建議國家相關部委給予配套資金支持。加快推進原子級大數據存儲技術研發和產業化轉化。支持申報重大 科技 項目和專項扶持資金。

5.建議形成能夠長期從事數據存儲技術創新的人才隊伍。借鑒全球數據存儲技術創新研發經驗,引進海內外數據存儲技術領域頂尖科學家和工程師。在高等院校與科研院所開設數據存儲技術專業課程,搭建完善的國內人才培養體系。

6.建議立項過程不宜採用常規項目申報、審批流程,亟需特事特辦予以批准。主要是有鑒於本項目相關的科研生產領域中,國內現有技術力量薄弱分散,評估體系資源匱乏。

7.建議項目推進應當低調快速務實:不重造勢,不揚虛名,不謀近利。主要是基於當前復雜敏感的國際政治經濟形勢,預計本項目勢將關聯國家核心產業戰略布局,影響未來數十年中國數字經濟命脈與發展。

作 者:中央 財經 大學中國互聯網經濟研究院研究員 歐陽日輝

通訊員:李 翀

戰略性新興產業專題報道 辦事,「刷臉」就行

張家口敢闖敢試、先行先試,積極 探索 氫能產業創新發展的有益路徑

「東數西算」正式啟動,樞紐網路如何建設?

「十四五」浪潮下如何構建城市數據中心網路?

「我為群眾辦實事」北京市發展改革委發布第三批政策工具應用指南

大美密雲 助推新興產業發展

東方測控:打造智能製造示範工廠,引領礦山行業新未來

㈣ 數據存儲技術論文3000字

資料庫存儲技術的出現,對於傳統的紙質存儲技術來說,具有革命性的作用,下面是我為大家精心推薦的數據存儲技術論文3000字,希望能夠對您有所幫助。

數據存儲技術論文3000字篇一

資料庫編程與資料庫存儲技術分析

【摘要】隨著信息技術的發展,以及人類社會文明進步,在與計算機相關的技術發展中,關於數據方面的處理工作,如今也越來越受到重視,在不同的發展時期,根據不同的計算機類型以及在實際應用的不同,資料庫的編程與資料庫存相儲技術方面的要求也有所差異,所以就要根據實際情況進行具體分析.本文就結合相關技術進行分析。

【關鍵詞】資料庫;編程;存儲;技術;分析

引言

在計算機的發展過程中,根據數據進行程序編輯,以及在計算機內部儲存程序的編輯都是非常重要的方面,雖然會根據所操作的計算機不同,而在具體操作過程中而出現有所區別,但是要針對相關的技術進行具體分析後就能夠發現,在數據存儲方面只要編輯好資料庫對應的程序,要取得好的工作成績不不難,所以研究好關於資料庫編程和資料庫存儲相關的技術,就能夠代替真實人的工作,取得良好的工作效果,促進計算機行業的發展.

隨著計算機的普及應用,計算機應用軟體得到了快速的發展,從某種意義上來說,計算機之所以能夠在各個領域中得到應用,很大程度上就是因為相應的應用軟體,根據各個行業的特點,軟體公司都開發了針對性的應用軟體,通過這些軟體的使用,能夠給實際的工作帶來方便,提升工作的效率,例如在工業自動化中,現在的計算機技術已經具有一定的智能性,可以代替人來進行操作,這種方式出現錯誤的幾率很低,而且計算機不需要休息,生產效率得到了大幅提高,在計算機軟體中,尤其是一些大型的軟體,資料庫是軟體的核心內容,因此在計算機軟體編寫過程中,資料庫編程和存儲技術,也是一個核心內容,受到我國特殊歷史原因影響,我國的軟體行業發展較慢,因此資料庫編程和存儲技術的核心都掌握在西方發達國家手中。

1、資料庫存儲技術簡述

1.1資料庫存儲技術的概念

資料庫的發展很大程度上依賴於計算機性能的提升,在計算機出現的早期,並沒有資料庫的概念,當時計算機的性能很低,只能進行一些簡單的數字運算,體積也非常龐大,還沒有數據存儲的概念,隨著晶體管和集成電路應用在計算機製造中,計算機的性能得到了大幅的提升,開始在各個領域中進行應用,當計算機被用於數據管理時,尤其是一些復雜的數據,傳統的存儲方式已經無法滿足人們的需要,在這種背景下,DSMS誕生了,這種資料庫管理系統在當時看來,是資料庫管理技術的一次革命,隨著計算機性能的提升,逐漸出現了SQL、Oracle等,在傳統的資料庫編程中,由於資料庫編寫的時期不同,使用的編寫語言也有一定的差異,目前常使用的軟體有VB、JAVA、VC、C++等,利用這些編程軟體,都可以編寫一個指定的資料庫,由於每個軟體自身都有一定的特點,因此不同領域的數據編程中,所選擇的編程軟體業有一定的差異。

1.2資料庫存儲技術的發展

資料庫的概念最早可以追溯到20世紀50年代,但是當時資料庫的管理,還處於傳統人工的方式,並沒有形成軟體的形式,因此並不能算資料庫存儲技術的起源,在20世紀60年代中期,隨著計算機存儲設備的出現,使得計算機能夠存儲數據,在這種背景下,數據管理軟體誕生了,但是受到當時技術條件的限制,只能以文件為單位,將數據存儲在外部存儲設備中,人們開發了帶有界面的操作系統,以便對存儲的數據進行管理,隨著計算機的普及應用,計算機能夠存儲的數據越來越多,人們對資料庫存儲技術有了更高的要求,尤其是企業用戶的增加,希望資料庫存儲技術能夠具有很高的共享能力,數據存儲技術在這一時期,得到了很大的發展,現在的資料庫存儲技術,很大程度上也是按照這一時期的標准,來進行相應的開發,隨著資料庫自身的發展,出現了很多新的資料庫存儲技術,如數據流、Web數據管理等。

1.3資料庫存儲技術的作用

資料庫存儲技術的出現,對於傳統的紙質存儲技術來說,具有革命性的作用,由於紙質存儲數據的方式,很容易受到水、火等災害,而造成數據的損失,人類文明從有文字開始,就記錄了大量的歷史信息,但是隨著時間的推移,很多數據資料都損毀了,給人類文明造成了嚴重的損失,而資料庫存儲技術就能夠很好的避免這個問題,在資料庫的環境下,信息都會轉化成電子的方式,存儲在計算機的硬碟中,對於硬碟的保存,要比紙質的書籍等簡單的多,需要的環境比較低,最新的一些伺服器存儲器,甚至具有防火的性能,而且資料庫中的數據,可以利用計算機很簡單的進行復制,目前很多企業資料庫,為了最大程度上保證數據的安全性,都會建立一個映像資料庫,定期的對資料庫中的信息進行備份,如果工作的資料庫出現了問題,就可以通過還原的方式,恢復原來的數據。

2、資料庫編程與資料庫存儲技術的關系

2.1資料庫編程決定資料庫存儲的類型

通過對計算機軟體的特點進行分析可以知道,任何軟體要想具有相關的功能,都需要在編程過程中來實現,對於資料庫程序來說也是一樣,在資料庫編程的過程中,能夠決定資料庫存儲的類型,根據應用領域的不同,資料庫存儲技術也有一定的差異,如在電力、交通控制等領域中,應用的大多是實時資料庫,而網上的視頻網站等,大多採用關系資料庫,其次還有商業資料庫、自由資料庫、微型資料庫等,每種資料庫的出現,都是為了滿足實際應用的需要,雖然在不同歷史時期,一種資料庫成為主流,但是對於資料庫程序的編寫者來說,這些資料庫的編寫;並沒有太大的差異,雖然不同的程序編寫人員,由於所受教育和習慣的不同,在實際編寫的過程中,使用的程序編寫軟體不同,但無論是VB、VF還是C++等,都可以實現每種資料庫類型的編寫,從某種意義上來說,資料庫類型的確定,通常是在軟體需求分析階段中進行設計,然後在數據編程階段來實現,

2.2資料庫存儲技術是資料庫編程的核心

對於資料庫程序來說,最重要的功能就是存儲數據,通常情況在,一個資料庫程序會分成幾個模塊,其中核心模塊就是資料庫存儲技術。

結語

在目前國內經濟發展形勢下,針對於計算機的軟體行業的形式,也在大力推動下,成為一個焦點行業,隨著行業的發展,相關促進簡便工作的程序也得到了相應的研究和發明中,就算是一些不具備計算機專業知識的普通使用著,不管在使用還是研發程序上也是介可以的,只是針對於資料庫編程和資料庫存儲技術方面進行分析,但是作為系統的核心區域,所以相關的技術也是非常重要的,所以要想提升工作效率,緩解工作壓力,就要結合使用情況,在所能應用的范圍內,選擇最具有優勢的相應軟體處理技術,以此為研發中心,開發出所需要的軟體類型,進行所有的數據整理工作,對於辦公室工作極大范圍內的促進,對於資料庫編程於數據存儲方面的技術是非常重要的。

參考文獻

[1]董慧群,王福明.基於LabWindows/CVI的資料庫編程[J].山西電子技術,2011(04):55-56.

[2]吳敏寧,高楠.Delphi資料庫編程開發[J].電腦知識與技術,2009(11):2882-2883.

[3]鄭剛,唐紅梅.面向對象資料庫中數據模型及存儲結構的研究[J].計算機工程,2002(03):65-67.

點擊下頁還有更多>>>數據存儲技術論文3000字

㈤ 分布式存儲技術有哪些

中央存儲技術現已發展非常成熟。但是同時,新的問題也出現了,中心化的網路很容易擁擠,數據很容易被濫用。傳統的數據傳輸方式是由客戶端向雲伺服器傳輸,由伺服器向客戶端下載。而分布式存儲系統QKFile是從客戶端傳送到 N個節點,然後從這些節點就近下載到客戶端內部,因此傳輸速度非常快。對比中心協議的特點是上傳、下載速度快,能夠有效地聚集空閑存儲資源,並能大大降低存儲成本。

在節點數量不斷增加的情況下,QKFile市場趨勢開始突出,未來用戶數量將呈指數增長。分布式存儲在未來會有很多應用場景,如數據存儲,文件傳輸,網路視頻,社會媒體和去中心化交易等。網際網路的控制權越來越集中在少數幾個大型技術公司的手中,它的網路被去中心化,就像分布式存儲一樣,總是以社區為中心,面向用戶,而分布式存儲就是實現信息技術和未來網際網路功能的遠景。有了分布式存儲,我們可以創造出更加自由、創新和民主的網路體驗。是時候把網際網路推向新階段了。

作為今年非常受歡迎的明星項目,關於QKFile的未來發展會推動互聯網的進步,給整個市場帶來巨大好處。分布式存儲是基於網際網路的基礎結構產生的,區塊鏈分布式存儲與人工智慧、大數據等有疊加作用。對今天的中心存儲是一個巨大的補充,分布式時代的到來並不是要取代現在的中心互聯網,而是要使未來的數據存儲發展得更好,給整個市場生態帶來不可想像的活力。先看共識,後看應用,QKFile創建了一個基礎設施平台,就像阿里雲,阿里雲上面是做游戲的做電商的視頻網站,這就叫應用層,現階段,在性能上,坦白說,與傳統的雲存儲相比,沒有什麼競爭力。不過另一方面來說,一個新型的去中心化存儲的信任環境式非常重要的,在此環境下,自然可以衍生出許多相關應用,市場潛力非常大。

雖然QKFile離真正的商用還有很大的距離,首先QKFile的經濟模型還沒有定論,其次QKFile需要集中精力發展分布式存儲、商業邏輯和 web3.0,只有打通分布式存儲賽道,才有實力引領整個行業發展,人們認識到了中心化存儲的弊端,還有許多企業開始接受分布式存儲模式,即分布式存儲 DAPP應用觸達用戶。所以QKFile將來肯定會有更多的商業應用。創建超本地高效存儲方式的能力。當用戶希望將數據存儲在QKFile網路上時,他們就可以擺脫巨大的集中存儲和地理位置的限制,用戶可以看到在線存儲的礦工及其市場價格,礦工之間相互競爭以贏得存儲合約。使用者挑選有競爭力的礦工,交易完成,用戶發送數據,然後礦工存儲數據,礦工必須證明數據的正確存儲才能得到QKFile獎勵。在網路中,通過密碼證明來驗證數據的存儲安全性。采礦者通過新區塊鏈向網路提交其儲存證明。通過網路發布的新區塊鏈驗證,只有正確的區塊鏈才能被接受,經過一段時間,礦工們就可以獲得交易存儲費用,並有機會得到區塊鏈獎勵。數據就在更需要它的地方傳播了,旋轉數據就在地球范圍內流動了,數據的獲取就不斷優化了,從小的礦機到大的數據中心,所有人都可以通過共同努力,為人類信息社會的建設奠定新的基礎,並從中獲益。

㈥ 大數據存儲與應用特點及技術路線分析

大數據存儲與應用特點及技術路線分析

大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。

大數據存儲與應用的特點分析

「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。

大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。

(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。

相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。

(2)大數據由於其來源的不同,具有數據多樣性的特點。

所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。

大數據存儲技術路線最典型的共有三種:

第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。

這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。

第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。

第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。

以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨

㈦ 雲存儲數據中心常用的網路存儲技術有哪些

直連式存儲、網路存儲設備和存儲網路。

一切以客戶的需求為出發點。傳統存儲以文件系統為典型代表,但是隨著數據爆炸性增長,傳統文件系統已經無法滿足對存儲系統的容量、性能等需求,因此,雲存儲應運而生。

雲存儲最大的特點是數據被集中存儲在數據中心,公有雲存儲將客戶數據存放在公有雲服務商數據中心,而私有雲存儲則是將公有雲存儲能力私有化部署在客戶自身的數據中心。

原則就是要盡可能把實際的物理介質索引,存儲的資料庫,數據存儲的磁碟抽象出來,在上層具有一個可拓展,可遷移的邏輯單元,當然對象存儲系統之間差異也很大,從潮流上看,基本都摒棄了索引的中心化存儲方案,在定址方面也各有各的花招。

雲計算關鍵技術雲計算是分布式處理、並行計算和網格計算等概念的發展和商業實現,其技術實質是計算、存儲、伺服器、應用軟體等IT軟硬體資源的虛擬化,雲計算在虛擬化、數據存儲、數據管理、編程模式等方面具有自身獨特的技術。

㈧ 數據的存儲方法有哪些

什麼是分布式存儲

分布式存儲是一種數據存儲技術,它通過網路使用企業中每台機器上的磁碟空間,這些分散的存儲資源構成了虛擬存儲設備,數據分布存儲在企業的各個角落。

分布式存儲系統,可在多個獨立設備上分發數據。傳統的網路存儲系統使用集中存儲伺服器來存儲所有數據。存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,無法滿足大規模存儲應用的需求。分布式網路存儲系統採用可擴展的系統結構,使用多個存儲伺服器共享存儲負載,利用位置伺服器定位存儲信息,不僅提高了系統的可靠性,可用性和訪問效率,而且易於擴展。


分布式存儲的優勢

可擴展:分布式存儲系統可以擴展到數百甚至數千個這樣的集群大小,並且系統的整體性能可以線性增長。

低成本:分布式存儲系統的自動容錯和自動負載平衡允許在低成本伺服器上構建分布式存儲系統。此外,線性可擴展性還能夠增加和降低伺服器的成本,並實現分布式存儲系統的自動操作和維護。

高性能:無論是針對單個伺服器還是針對分布式存儲群集,分布式存儲系統都需要高性能。

易用性:分布式存儲系統需要提供方便易用的界面。此外,他們還需要擁有完整的監控和操作工具,並且可以輕松地與其他系統集成。

杉岩分布式統一存儲USP

利用分布式技術將標准x86伺服器的HDD、SSD等存儲介質抽象成資源池,對上層應用提供標準的塊、文件、對象訪問介面,

同時提供清晰直觀的統一管理界面,減少部署和運維成本,滿足高性能、高可靠、高可擴展性的大規模存儲資源池的建設需求。

㈨ 大數據關鍵技術有哪些

大數據關鍵技術涵蓋數據存儲、處理、應用等多方面的技術,根據大數據的處理過程,可將其分為大數據採集、大數據預處理、大數據存儲及管理、大數據處理、大數據分析及挖掘、大數據展示等。

1、大數據採集技術

大數據採集技術是指通過 RFID 數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得各種類型的結構化、半結構化及非結構化的海量數據。

因為數據源多種多樣,數據量大,產生速度快,所以大數據採集技術也面臨著許多技術挑戰,必須保證數據採集的可靠性和高效性,還要避免重復數據。

2、大數據預處理技術

大數據預處理技術主要是指完成對已接收數據的辨析、抽取、清洗、填補、平滑、合並、規格化及檢查一致性等操作。

因獲取的數據可能具有多種結構和類型,數據抽取的主要目的是將這些復雜的數據轉化為單一的或者便於處理的結構,以達到快速分析處理的目的。

3、大數據存儲及管理技術

大數據存儲及管理的主要目的是用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。

4、大數據處理

大數據的應用類型很多,主要的處理模式可以分為流處理模式和批處理模式兩種。批處理是先存儲後處理,而流處理則是直接處理。

(9)數據存儲應用技術擴展閱讀:

大數據無處不在,大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、體能和娛樂等在內的社會各行各業都已經融入了大數據的印跡。

1、製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業,利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

5、電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

熱點內容
為什麼說安卓是物聯網的動力 發布:2025-07-14 06:13:51 瀏覽:728
海康dns伺服器什麼意思 發布:2025-07-14 06:13:16 瀏覽:808
linux下的游戲 發布:2025-07-14 05:52:16 瀏覽:748
基帶被加密 發布:2025-07-14 05:52:14 瀏覽:289
小型密碼鎖怎麼改密碼 發布:2025-07-14 05:49:45 瀏覽:622
vs多核編譯 發布:2025-07-14 05:36:43 瀏覽:123
蘋果哪裡有轉移到安卓數據的代碼 發布:2025-07-14 05:34:41 瀏覽:223
虛擬伺服器外網訪問 發布:2025-07-14 05:29:06 瀏覽:1002
如何連接公司伺服器ip 發布:2025-07-14 05:24:02 瀏覽:247
新速騰哪個配置最香 發布:2025-07-14 05:13:38 瀏覽:416