存儲間門
① 文件存儲空間管理
上篇文章介紹了文件的物理結構並介紹了文件分配的三種方式——連續分配、鏈接分配和索引分配。
本文介紹操作系統對文件存儲空間的管理。
本文內容
存儲空間的劃分: 將物理磁碟劃分為一個個文件卷(邏輯卷、邏輯盤) 。
在存儲空間初始化時,需要將各個文件卷劃分為目錄區、文件區。
有些系統支持超大型文件,可支持由多個物理磁碟組成一個文件卷。
空閑表法:即用一張表記錄磁碟中空閑的盤塊。空閑表的表項由 空閑盤的起始塊號 和 空閑盤塊數 組成。如下圖所示
如何分配磁碟塊:與內存管理中的動態分區分配類似,為一個文件分配連續的存儲空間。同樣可以採用 首次適應演算法、最佳適應演算法、最壞適應演算法,臨近適應演算法 來決定要為文件分配哪些區間。
空閑表法適用於連續分配方式。
例如,如果新創建的文件請求3個塊,按照首次適用演算法,從10號塊開始有5個連續的塊可以滿足需求,所以把10、11、12三個塊分配給文件,分配後的空閑盤塊表如下
這里以回收區前後都是空閑區為例,磁碟是第一幅圖的狀態,如果回收21、22號磁碟塊,那麼回收後的空閑盤塊表如下圖所示。
空閑鏈表法分為兩種: 空閑盤塊鏈和空閑盤區鏈
下圖分別表示空閑盤塊鏈和空閑盤區鏈。
操作系統保存著 鏈頭、鏈尾指針。
如何分配:如過某文件申請K個盤塊,則從鏈頭開始依次摘下K個盤塊分配,並修改空閑鏈的鏈頭指針。
如何回收:回收的盤塊依次掛到鏈尾,並修改空閑鏈的鏈尾指針。
下圖表示分配了3個盤塊
從上面可以看出,空閑盤塊法適用於 離散分配 的物理結構。為文件分配多個盤塊時可能要重復多次操作。
操作系統保存著 鏈頭、鏈尾指針 。
如何分配:若某文件申請K個盤塊,由於空閑盤區鏈將連續的盤塊組成一個盤區,所以若某個盤區大小滿足可以實現一次分配,同樣可以採用首次適用、最佳適用等演算法,從鏈頭開始檢索,按照一定的規則找到一個大小符合要求的空閑盤區分配給文件。若沒有合適的連續空閑塊,也可以將不同的盤區的盤同時分配給一個文件,同樣分配後也需要修改相應的指針鏈和盤區大小等數據。
如何回收:若回收區和某個空閑盤區相鄰,則需要將回收區合並到空閑盤區中。若回收區沒有和任何空閑區相鄰,將回收區作為一個單獨的一個空閑盤區掛到鏈尾。同樣也需要修改鏈表指針和盤區大小等信息。
下圖表示按照首次適用演算法分配3個盤區
從上面可以看出,空閑盤區鏈對 離散分配、連續分配 都適用。為一個文件分配多個盤塊時 效率更高 。
位示圖:磁碟內存被劃分為一個個磁碟塊,可以用二進制位對應一個盤塊。「0」代表盤塊空閑,「1」代表盤塊已分配。位示圖一般用連續的「字」來表示,下圖中一個字的字長是16位,字中的每一位對應一個盤塊。因此可以用(字型大小,位號)對應一個盤塊號。
如何分配:若文件需要K個塊,①順序掃描位示圖,找到K個相鄰或不相鄰的「0」;②根據字型大小、位號算出對應的盤塊號,將相應的盤塊分配給文件;③將相應的位設置為「1」。
如何回收:①根據回收的盤塊號計算出對應的字型大小、位號;②將相應的二進制位設置為「0」。
從上面可以看出:位示圖法對 連續分配和離散分配 都適用。
空閑表法、空閑鏈表法不適用大型文件系統,因為空閑表或空閑聯保可能過大。UNIX系統中採用了 成組鏈接法 對磁碟空閑塊進行管理。這是將上述兩種方法相結合的而形成的一種空閑管理方法。
文件卷的目錄區中專門用一個磁碟塊作為 超級塊 ,當系統啟動時需要將 超級塊讀入內存 。並且要保證與外存中的「超過塊」的數據一致。
內存的分配過程:分配過程是從棧頂取出一空閑盤塊號,將與之對應的盤塊分配給用戶,然後將棧頂指針下移一格,若該盤塊號已是棧底(即第一個盤塊),這是當前棧中最後一個可分配的盤塊號。由於在該盤塊號所對應的盤塊中記有下一組可用的盤塊號,因此,不能直接將它分配掉,需要將它記錄的下一組信息保存下來,所以比須調用磁碟讀過程,將棧底盤塊號所對應盤塊的內容讀入棧中,作為新的盤塊號棧的內容,並把原棧底對應的盤塊分配出去(其中的有用數據已讀入棧中)。然後,再分配一相應的緩沖區(作為該盤塊的緩沖區)。最後,把棧中的空閑盤塊數減1 並返回。
下面舉例說明
如果此時新建一個文件需要一個磁碟塊,那麼此時第一組有100個空閑塊,所以是足夠分配的,將棧頂的盤塊號即201號盤塊對應的盤塊分配出去,如下圖
如果此時又創建一個新的文件,需要99個磁碟塊,就需要將剩下的99個盤塊全部分配出去,但是此時300號盤塊記錄了下一組信息,如果分配出去,信息就是丟失,所以需要將300號盤塊從外存(磁碟)讀入內存,將300號盤塊記錄的信息,寫入空閑盤塊號棧,然後才能將這99塊空閑塊分配出去。具體過程如下圖所示
內存的回收過程:在系統回收空閑盤塊時,須調用盤塊回收過程進行回收。它是將回收盤塊的盤塊號記入空閑盤塊號棧的頂部,並執行空閑盤塊數加 1 操作。當棧中空閑盤塊號數目已達 100 時,表示棧已滿,便將現有棧中的100 個盤塊號記入新回收的盤塊中,再將其盤塊號作為新棧底。
以分配的第一個圖為例,201盤塊被分配出去了,如果此刻有個文件被刪除了,其佔用的盤塊是199號,系統需要回收這個盤塊,發現此時空閑盤塊號棧中記錄空閑塊數為99,直接將盤塊號記錄棧頂,將空閑盤塊數加1即可。
如果此時又有一個文件被刪除了,其佔用的盤塊是190,此時空閑盤塊號數已經達到100了,就需要將現在空閑盤塊棧中信息記入新回收的塊中。
② 存儲介質主要有哪些,其特點是什麼
存儲介質是指存儲數據的載體。比如軟盤、光碟、DVD、硬碟、快閃記憶體、U盤、CF卡、SD卡、MMC卡、SM卡、記憶棒(Memory Stick)、xD卡等。
特點:存儲空間大,速度快,可讀寫,安全性高,攜帶不方便。
流行的存儲介質是基於快閃記憶體(Nand flash)的,比如U盤、CF卡、SD卡、SDHC卡、MMC卡、SM卡、記憶棒、xD卡等。
數碼相機將圖像信號轉換為數據文件保存在磁介質設備或者光記錄介質上。如果說數碼相機是電腦的主機,那麼存儲卡相當於電腦的硬碟。存儲記憶體除了可以記載圖像文件以外,還可以記載其他類型的文件,通過USB和電腦相連,就成了一個移動硬碟。
CF卡
CF卡(Compact Flash)是1994年由SanDisk最先推出的。CF卡具有PCMCIA-ATA功能,並與之兼容;CF卡重量只有14g,僅紙板火柴般大小(43mm x 36m x m3.3mm),是一種固態產品,也就是工作時沒有運動部件。CF卡採用快閃記憶體(flash)技術,是一種穩定的存儲解決方案,不需要電池來維持其中存儲的數據。
優點
對所保存的數據來說,CF卡比傳統的磁碟驅動器安全性和保護性都更高;比傳統的磁碟驅動器及Ⅲ型PC卡的可靠性高5到10倍,而且CF卡的用電量僅為小型磁碟驅動器的5%。CF卡使用3.3V到5V之間的電壓工作(包括3.3V或5V)。這些優異的條件使得大多數數碼相機選擇CF卡作為其首選存儲介質。
CF卡作為世界范圍內的存儲行業標准,保證CF產品的兼容,保證CF卡的向後兼容性;隨著CF卡越來越被廣泛應用,各廠商積極提高CF卡的技術,促進新一代體小質輕、低能耗先進移動設備的推出,進而提高工作效率。
CFA總部在加拿大的Palo Alto,其成員有權免費得到CF卡、CF商標和CF技術詳情。CFA成員包括3COM,佳能、柯達、惠普、日立、IBM、松下、摩托羅拉、NEC、SanDisk、精工(愛普生)和Socket Communications等120多個。而且其中的主要數碼相機生產研發廠商已經成立了一個專門組織,從事於CF產品的開發。
③ 主流存儲介質有哪些
存儲介質是指存儲數據的載體。比如軟盤、光碟、DVD、硬碟、快閃記憶體、U盤、CF卡、SD卡、MMC卡、SM卡、記憶棒(Memory Stick)、xD卡等。目前最流行的存儲介質是基於快閃記憶體(Nand flash)的,比如U盤、CF卡、SD卡、SDHC卡、MMC卡、SM卡、記憶棒、xD卡等。
數碼相機將圖像信號轉換為數據文件保存在磁介質設備或者光記錄介質上。如果說數碼相機是電腦的主機,那麼存儲卡相當於電腦的硬碟。存儲記憶體除了可以記載圖像文件以外,還可以記載其他類型的文件,通過USB和電腦相連,就成了一個移動硬碟。
用於存儲圖像的介質越來越多,如何選擇合適的存儲介質對數碼攝影者尤其是從事數碼攝影職業的專業人士來說,是很重要的一件事。
優點
對所保存的數據來說,CF卡比傳統的磁碟驅動器安全性和保護性都更高;比傳統的磁碟驅動器及Ⅲ型PC卡的可靠性高5到10倍,而且CF卡的用電量僅為小型磁碟驅動器的5%。
CF卡使用3.3V到5V之間的電壓工作(包括3.3V或5V)。這些優異的條件使得大多數數碼相機選擇CF卡作為其首選存儲介質。
④ 存儲器可分為哪三類
存儲器不僅可以分為三類。因為按照不同的劃分方法,存儲器可分為不同種類。常見的分類方法如下。
一、按存儲介質劃分
1. 半導體存儲器:用半導體器件組成的存儲器。
2. 磁表面存儲器:用磁性材料做成的存儲器。
二、按存儲方式劃分
1. 隨機存儲器:任何存儲單元的內容都能被隨機存取,且存取時間和存儲單元的物理位置無關。
2. 順序存儲器:只能按某種順序來存取,存取時間和存儲單元的物理位置有關。
三、按讀寫功能劃分
1. 只讀存儲器(ROM):存儲的內容是固定不變的,只能讀出而不能寫入的半導體存儲器。
2. 隨機讀寫存儲器(RAM):既能讀出又能寫入的存儲器。
二、選用各種存儲器,一般遵循的選擇如下:
1、內部存儲器與外部存儲器
一般而言,內部存儲器的性價比最高但靈活性最低,因此用戶必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,用戶通常選擇能滿足應用要求的存儲器容量最小的微控制器。
2、引導存儲器
在較大的微控制器系統或基於處理器的系統中,用戶可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。
3、配置存儲器
對於現場可編程門陣列(FPGA)或片上系統(SoC),可以使用存儲器來存儲配置信息。這種存儲器必須是非易失性EPROM、EEPROM或快閃記憶體。大多數情況下,FPGA採用SPI介面,但一些較老的器件仍採用FPGA串列介面。
4、程序存儲器
所有帶處理器的系統都採用程序存儲器,但是用戶必須決定這個存儲器是位於處理器內部還是外部。在做出了這個決策之後,用戶才能進一步確定存儲器的容量和類型。
5、數據存儲器
與程序存儲器類似,數據存儲器可以位於微控制器內部,或者是外部器件,但這兩種情況存在一些差別。有時微控制器內部包含SRAM(易失性)和EEPROM(非易失)兩種數據存儲器,但有時不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,用戶可以選擇外部的串列EEPROM或串列快閃記憶體器件。
6、易失性和非易失性存儲器
存儲器可分成易失性存儲器或者非易失性存儲器,前者在斷電後將丟失數據,而後者在斷電後仍可保持數據。用戶有時將易失性存儲器與後備電池一起使用,使其表現猶如非易失性器件,但這可能比簡單地使用非易失性存儲器更加昂貴。
7、串列存儲器和並行存儲器
對於較大的應用系統,微控制器通常沒有足夠大的內部存儲器。這時必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部的程序存儲器和數據存儲器也將是並行的。
8、EEPROM與快閃記憶體
存儲器技術的成熟使得RAM和ROM之間的界限變得很模糊,如今有一些類型的存儲器(比如EEPROM和快閃記憶體)組合了兩者的特性。這些器件像RAM一樣進行讀寫,並像ROM一樣在斷電時保持數據,它們都可電擦除且可編程,但各自有它們優缺點。
參考資料來源:網路——存儲器
⑤ 華為P10「內存門」事件究竟怎麼回事
事源於此,早期有網友在使用工具對自己的華為 P10 進行存儲速度讀取的測試後發現,其內存讀取速度僅為 300MB/s,和官方宣傳的數據大相徑庭,但此事並未被重視。此後陸續有網友發現自己也遇到類似的情況,相同兩台 P10 手機,但測試結果卻完全不同。
於是在華為論壇上,大家通過安卓平台的開發工具,證實華為 P10 的存儲晶元有 eMMC5.1、UFS 2.0 和 UFS 2.1三種版本,甚至內存都還有 LPDDR 3 的情況,當然彼此的速度也有天大的差異。
⑥ 存儲介質和存儲設備的區別
存儲介質
數碼相機將圖像信號轉換為數據文件保存在磁介質設備或者光記錄介質上。如果說數碼相機是電腦的主機,那麼存儲卡相當於電腦的硬碟。存儲記憶體除了可以記載圖像文件以外,還可以記載其他類型的文件,通過USB和電腦相連,就成了一個移動硬碟。
用於存儲圖像的介質越來越多,如何選擇合適的存儲介質對數碼攝影者尤其是從事數碼攝影職業的專業人士來說,是很重要的一件事。選擇存儲設備時要考慮到:
設備與可轉移介質的價格;
可存儲的信息量;
存儲介質的使用壽命;
從磁碟上讀寫信息的速度,即由驅動器決定的數據轉移速度。
市面上常見的存儲介質有CF卡、SD卡、MMC卡、SM卡、記憶棒(Memory Stick)、xD卡和小硬碟MICRoDRIVE)。
數碼相機將圖像信號轉換為數據文件保存在磁介質設備或者光記錄介質上。如果說數碼相機是電腦的主機,那麼存儲卡相當於電腦的硬碟。存儲記憶體除了可以記載圖像文件意外,還可以記載其他類型的文件,通過USB和電腦相連,就成了一個移動硬碟。市面上常見的存儲介質有CF卡、SD卡、SM、記憶棒和小硬碟。
CF卡:
CF卡(Compact Flash)是1994年由SanDisk最先推出的。CF卡具有PCMCIA-ATA功能,並與之兼容;CF卡重量只有14g,僅紙板火柴般大小(43mm x 36m x m3.3mm),是一種固態產品,也就是工作時沒有運動部件。CF卡採用快閃記憶體(flash)技術,是一種穩定的存儲解決方案,不需要電池來維持其中存儲的數據。對所保存的數據來說,CF卡比傳統的磁碟驅動器安全性和保護性都更高;比傳統的磁碟驅動器及Ⅲ型PC卡的可靠性高5到10倍,而且CF卡的用電量僅為小型磁碟驅動器的5%。CF卡使用3.3V到5V之間的電壓工作(包括3.3V或5V)。這些優異的條件使得大多數數碼相機選擇CF卡作為其首選存儲介質。
CF卡作為世界范圍內的存儲行業標准,保證CF產品的兼容,保證CF卡的向後兼容性;隨著CF卡越來越被廣泛應用,各廠商積極提高CF卡的技術,促進新一代體小質輕、低能耗先進移動設備的推出,進而提高工作效率。CFA總部在加拿大的Palo Alto,其成員有權免費得到CF卡、CF商標和CF技術詳情。CFA成員包括3COM,佳能、柯達、惠普、日立、IBM、松下、摩托羅拉、NEC、SanDisk、精工(愛普生)和Socket Communications等120多個。而且其中的主要數碼相機生產研發廠商已經成立了一個專門組織,從事於CF產品的開發。
CF卡有以下缺點:
1、容量有限。雖然容量在成倍提高,但仍趕不上數碼相機的像素發展。目前的5百萬像素以上產品已經是流行的高端產品最低規格,而民用主流市場也達到3百萬像素級別。普通民用的JPEG壓縮格式下,容量尚可,但是專業級的TIFF(RAW)格式文件還是放不下幾張圖像數據。
2、體積較大。與其他種類的存儲卡相比,CF卡的體積略微偏大,這也限制了使用CF卡的數碼相機體積,所以現下流行的超薄數碼相機大多放棄了CF卡,而改用體積更為小巧的SD卡。
3、性能限制。CF卡的工作溫度一般是0-40攝氏度。因此0度以下的環境中,數碼相機基本可以說變成了「廢物」。即使是專業機也不能倖免。雖然目前軍用的CF卡耐寒能力達到-40攝氏度,可是什麼時候普及,價格什麼時候跌到普通老百姓可以承受的地步還不得而知。
目前世界上最大的CF型卡容量已經達640M。一般市場上常見的是8MB、16MB、32MB、64MB、128MB、256MB等幾種(128MB以上的為Ⅱ型)。
SM卡:
SM(Smart Media)卡是由東芝公司在1995年11月發布的Flash Memory存貯卡,三星公司在1996年購買了生產和銷售許可,這兩家公司成為主要的SM卡廠商。為了推動SmartMedia成為工業標准,1996年4月成立了SSFDC論壇(SSFDC即Solid State Floppy Disk Card,實際上最開始時SmartMedia被稱為SSFDC,1996年6月改名為SmartMedia,並成為東芝的注冊商標)。SSFDC論壇有超過150個成員,同樣包括不少大廠商,如Sony、Sharp、JVC、Philips、NEC、SanDisk等廠商。SmartMedia卡也是市場上常見的微存貯卡,一度在MP3播放器上非常的流行。
SM卡的尺寸為37mm×45mm×0.76mm(圖1),由於SM卡本身沒有控制電路,而且由塑膠製成(被分成了許多薄片),因此SM卡的體積小非常輕薄,在2002年以前被廣泛應用於數碼產品當中,比如奧林巴斯的老款數碼相機以及富士的老款數碼相機多採用SM存儲卡。但由於SM卡的控制電路是集成在數碼產品當中(比如數碼相機),這使得數碼相機的兼容性容易受到影響。
目前新推出的數碼相機中都已經沒有採用SM存儲卡的產品了。
SD卡:
SD卡(Secure Digital Memory Card)是一種基於半導體快閃記憶器的新一代記憶設備。SD卡由日本松下、東芝及美國SanDisk公司於1999年8月共同開發研製。大小猶如一張郵票的SD記憶卡,重量只有2克,但卻擁有高記憶容量、快速數據傳輸率、極大的移動靈活性以及很好的安全性。
SD卡在24mm×32mm×2.1mm的體積內結合了SanDisk快閃記憶卡控制與MLC(Multilevel Cell)技術和Toshiba(東芝)0.16u及0.13u的NAND技術,通過9針的介面界面與專門的驅動器相連接,不需要額外的電源來保持其上記憶的信息。而且它是一體化固體介質,沒有任何移動部分,所以不用擔心機械運動的損壞。
SD卡的結構能保證數字文件傳送的安全性,也很容易重新格式化,所以有著廣泛的應用領域,音樂、電影、新聞等多媒體文件都可以方便地保存到SD卡中。因此不少數碼相機也開始支持SD卡。
很多存儲卡公司都有開發SD卡,松下是目前SD卡最主要的生產廠家,2000年時 SD卡容量已經從8MB到64MB分為4個不同的等級來滿足不同場合的需要,數據傳輸率為2MB/s。到2001年末單卡容量已經高達512MB,數據傳輸率也提升到10MB/s。松下計劃到2003年推出容量達到1GB,數據傳輸率為20MB/s的高性能儲存卡,到2005年容量有望達到4GB。看來另闢蹊徑的SD卡有望在數碼相機存儲介質方面打開另外一片天。
記憶棒:
索尼一向獨來獨往的性格造就了記憶棒的誕生。這種口香糖型的存儲設備幾乎可以在所有的索尼影音產品上通用。記憶棒(Memory Stick)外形輕巧,並擁有全面多元化的功能。它的極高兼容性和前所未有的「通用儲存媒體」(Universal Media)概念,為未來高科技個人電腦、電視、電話、數碼照相機、攝像機和攜帶型個人視聽器材提供新一代更高速、更大容量的數字信息儲存、交換媒體。
除了外型小巧、具有極高穩定性和版權保護功能以及方便地使用於各種記憶棒系列產品等特點外,記憶棒的優勢還在於索尼推出的大量利用該項技術的產品,如DV攝像機、數碼相機、VAIO個人電腦、彩色列印機、Walkman、IC錄音機、LCD電視等,而PC卡轉換器、3.5英寸軟盤轉換器、並行出口轉換器和USB讀寫器等全線附件使得記憶棒可輕松實現與PC及蘋果機的連接。
記憶棒推出後,三星、愛華、三洋、卡西歐、富士通、奧林巴斯、夏普等一系列公司已表示了對此格式的支持。索尼公司目前還在尋求家用電子行業和IT行業對記憶棒格式的認同。 Sony將在今後把更多代表記憶棒最新發展的產品介紹到國內市場。
記憶棒的缺點一是只能在索尼數碼相機中使用,二是容量尚不夠大
微型硬碟:
MICRoDRIVE是美國IBM公司推出的大容量存儲介質,中文名稱叫微型硬碟。由於數碼相機缺少大容量的存儲介質,曾一度阻礙了數碼相機的發展,IBM公司看到了這方面的市場空白,結合自己在硬碟製造方面的優勢,果斷地推出了與CF卡Ⅱ型介面一致的微型硬碟,剛推出時容量便高達340MB,經過一年多的發展,容量已達到1G,使數碼相機以AVI格式拍攝動態影像時不必再用秒計算了。當然就目前的價格來看它還是比較貴的,不過就每MB性價比來看,它要比SM卡、CF卡和記憶棒劃算多了。另外從理論上講,只要支持CF卡Ⅱ型介面的數碼相機也支持微型硬碟,但實際上有些機型如愛普生PC-3000雖然採用Ⅱ型介面,卻不支持微型硬碟。目前支持微型硬碟的數碼相機有卡西歐QV3000EX、佳能PoWERShot S20、G1等機型。
MMC卡:
MMC(MultiMediaCard,多媒體存儲卡)由SanDisk和Siemens公司在1997年發起,與傳統的移動存儲卡相比,其最明顯的外在特徵是尺寸更加微縮——只有普通的郵票大小(是CF卡尺寸的1/5左右),外形尺寸只有32mm×24mm×1.4mm,而其重量不超過2g。這使其成為世界上最小的半導體移動存儲卡,它對於越來越追求便攜性的各類手持設備形成強有力的支持。
MMC在設計之初是瞄準手機和尋呼機市場,之後因其小尺寸等獨特優勢而迅速被引進更多的應用領域,如數碼相機、PDA、MP3播放器、筆記本電腦、攜帶型游戲機、數碼攝像機乃至手持式GPS等。
另外,由於採用更低的工作電壓,驅動電壓為2.7-3.6V。MMC比CF和SM等上代產品更加省電,目前常見的容量為64MB/128MB,ATP Electrionics公司已經率先推出了1GB的高容量MMC卡。
xD卡:
xD卡是由日本奧林巴斯株式會社和富士有限公司聯合推出的一種新型存儲卡,有極其緊湊的外形,只有一張郵票那麼大。外觀尺寸僅為20×25×1.7mm,重量僅為2克重。在存儲卡領域可以算得上是最小的了。 xD卡採用單面18針介面,理論上圖像存儲容量最高可達8GB,2004年富士與奧林巴斯聯合推出了存儲容量最高達1GB的 xD 卡。而且其讀寫速度也更高,(讀取速率為5MB/S,寫入速率為3MB/S左右)可以滿足大數據量寫入,功耗也更低,xD-Picture存儲卡不僅可以同時用於個人電腦適配卡和USB讀卡機,使之非常容易與個人電腦連接,而且其還可配合Compact Flash轉接適配器,並允許在數碼相機里做為Compact Flash卡存儲介質使用。雖然xD卡目前的價格有些昂貴,不過由於隨著快閃記憶體晶元及其它存儲卡價格的不斷下滑,xD卡的價格將有較大的降價空間。
xD卡的使用注意事項
(1)盡量不要用讀卡器格式化xD卡,否則可能會造成卡的格式錯誤,使其無法存儲照片,造成死機現象。
(2)在用讀卡器傳輸圖像時,應該用復制操作,不要進行剪切操作,而作刪除操作時只能通過數碼相機自身的刪除功能。不然也會造成存儲卡的故障。
SDHC卡:
SDHC是「High Capacity SD Memory Card」的縮寫,即「高容量SD存儲卡」。2006年5月SD協會發布了最新版的SD 2.0的系統規范,在其中規定SDHC是符合新的規范、且容量大於2GB小於等於32GB的SD卡。SDHC最大的特點就是高容量(2GB-32GB)。另外,SD協會規定SDHC必須採用FAT32 文件系統,這是因為之前在SD卡中使用的FAT16文件系統所支持的最大容量為2GB,並不能滿足SDHC的要求。
所有大於2G容量的SD卡必須符合SDHC規范,規范中指出SDHC至少需符合Class 2的速度等級,並且在卡片上必須有SDHC標志和速度等級標志。在市場上有一些品牌提供的4GB或更高容量的SD卡並不符合以上條件,例如缺少SDHC標志或速度等級標志,這些存儲卡不能被稱為SDHC卡,嚴格說來它們是不被SD協會所認可的,這類卡在使用中很可能出現與設備的兼容性問題。