人工菌存儲
㈠ 無菌物品的存放要求有哪些
有環境要求、人員要求、無菌物品有效期要求。
環境要求
1、滅菌物品應存放在無菌物品存放間的存放架或存放櫃內,存放架或存放櫃應便於清潔,不易生銹;保存環境應清潔、明亮、通風或有空氣凈化裝置,照明光線充足;溫度低於24℃,濕度低於70%。
2、滅菌物品應分類存放,一次性無菌物品應去掉外層大包裝存放,存放位置相對固定,標識清晰;物品存放應距地面20~25cm,距牆壁5~10cm,距天花板50cm。
3、手術室、治療室、換葯室等採用自然通風的,當通風不良時可使用排氣扇強制換氣;無菌物品保存環境均應每日清潔,物體表面及地面濕式擦拭,避免揚塵。
4、建立工作記錄。
人員要求
1、無菌物品存放區應有專人負責管理;接觸無菌物品前洗手。
2、清點物品時以目測為主,減少觸摸。
3、擺放無菌物品時應按照有效期限依次擺放,有效期標志醒目,鄰近過期的物品放在方便取用位置;一次性使用無菌用品應一個批次用完再放入下一批次,或將剩餘少量未用完批次物品放在上層。
無菌物品有效期
1、無菌物品保存有效期無季節限制,依據包裝材質不同保存有效期限不同,使用時應仔細查看有效期標志。
2、滅菌物品的包裝應整潔不易鬆散,密封性好,無破洞,滅菌日期及有效期標志清楚,按照有效期順序依次碼放在儲存架或儲存櫃內,有效期標志應明示,便於目測清點。
(1)人工菌存儲擴展閱讀:
滅菌常用的方法有化學試劑滅菌、射線滅菌、乾熱滅菌、濕熱滅菌和過濾除菌等。可根據不同的需求,採用不同的方法,如培養基滅菌一般採用濕熱滅菌,空氣則採用過濾除菌。
1、熱滅菌法
熱滅菌法利用高溫使微生物細胞內的一切蛋白質變性,酶活性消失,致使細胞死亡。通常有乾熱、濕熱和間歇加熱滅菌等法。
2、乾熱滅菌
火焰灼燒法或烘箱內熱空氣滅菌法稱為乾熱滅菌法(dryheatsterilization)。
把金屬器械或洗凈的玻璃器皿放入電熱烘箱內,在150~170℃下維持1~2小時後,可達到徹底滅菌(包括細菌的芽孢)的目的。灼燒(incineration或combustion)是一種最徹底的乾熱滅菌法,應用范圍僅限於接種環、接種針的滅菌或帶病原菌的材料、動物屍體的燒毀等。
3、濕熱滅菌
以沸水、蒸氣和蒸氣加壓滅菌。
巴氏消毒法:因最早由法國微生物學家巴斯德用於果酒消毒,故名。這是一種專用於牛奶、啤酒、果酒或醬油等不宜進行高溫滅菌的液態風味食品或調料的低溫消毒方法。
煮沸消毒法:採用在100℃下煮沸數分鍾的方法,一般用於飲用水的消毒。
4、間歇滅菌
間歇滅菌連續3天,每天進行一次蒸氣滅菌的方法。此法適用於不能耐 100℃以上溫度的物質和一些糖類或蛋白質類物質。一般是在正常大氣壓下用蒸氣滅菌1小時。滅菌溫度不超過100℃,不致造成糖類等物質的破壞,而可將間歇培養期間萌發的孢子殺死,從而達到徹底滅菌的目的。
5、輻射滅菌
輻射滅菌在一定條件下利用射線進行滅菌的方法。較常用的有紫外線,其他還有電離輻射(射線加快中子等)。波長在25000~80000納米之間的激光也有強烈的殺菌能力,以波長26500納米最有效。輻射滅菌法僅限於某一定材料,因所需設備復雜,難於廣泛使用。
6、滲透壓滅菌
滲透壓滅菌利用高滲透壓溶液進行滅菌的方法。在高濃度的食鹽或糖溶液中細胞因脫水而發生質壁分離,不能進行正常的新陳代謝,結果導致微生物的死亡。
7、化學試劑滅菌
大多數化學葯劑在低濃度下起抑菌作用,高濃度下起殺菌作用。常用5%石炭酸、70%乙醇和乙二醇等。化學滅菌劑必須有揮發性,以便清除滅菌後材料上殘余的葯物。
化學滅菌常用的試劑有表面消毒劑、抗代謝葯物(磺胺類等)、抗生素、生物葯物素抗生素是一類有微生物或其他生物生命活動過程中的合成的次生代謝產物或人工衍生物。
他們在很低濃度時就能抑制或感染它種生物(包括病原菌,病毒,癌細胞等)的生命活動,因而可用作優良的化學治療劑。
參考鏈接:網路-滅菌
㈡ 野生菌怎樣短期保鮮,放在冰箱里可以嗎
新鮮的野生菌菇應該如何保存,可以放在冰箱嗎?新鮮的野生菌作為一種新鮮的菌類食物,容易變質,不易保存,放到冰箱中雖然可以冷凍,但是會極大地影響口感。一般在打雷下雨後,樹林中、草地上會長出非常多的野生菌,但是並不建議大家貿然食用,因為有中毒的風險,雖然野生味道十分鮮美,而且營養價值也極高,非常適合煲湯食用,不僅中國,在日本、韓國等地也深受喜歡,但這種蘑菇不是很好保存,而且只適合新鮮食用,對於新鮮的野生菌,一般在常溫下可以存放2~3天,但是很快變色變質,如果放到冰箱中的低溫下能延緩食物的腐敗變質,野生菌當然也可以放在冰箱中冷凍保存,可延長其保質期,新鮮的野生菌在冰箱中能放3~5天左右。
其實它也是生態環境中的一員,對保持生態平衡有很好的作用,不建議過多採摘,它們也是野生動物的食物,單純從營養價值來說,跟我們人工培育的菌類區別不大,而且還有其它的風險,比如重金屬中毒等問題,所以不建議過多食用野生菌,但是可以拍照留念,菌類都非常好看的。
㈢ DNA存儲,拯救人類數據危機的良方
開一個腦洞:如果地球正在面臨一場馬上到來的毀滅性星際災害,人類又想盡可能地保存地球的生命和文明,在現有條件下,該怎麼辦?
像大劉一樣讓地球停止自轉然後逃離太陽系,這恐怕來不及了。而如果像諾亞方舟一樣,一股腦把人類、動植物和人類的知識搬運到飛船上,現有的火箭運載能力,恐怕也裝不下這些物質的億萬分之一。
如果想盡可能多、盡可能長久地保存地球的生物,我們只需要把所有物種的DNA序列信息收集打包,在飛船的低溫環境下便可以保存長達數十萬年;而人類文明的信息呢?我們知道這些信息最高效的形式就是數據,而這些數據主要存儲在硬碟和光碟當中的。
想想這些硬碟儲存器的重量和數據密度,我們不得不再一次氣餒。更何況,可能飛船還沒逃出太陽系,這些數據就會因為硬碟或光碟的壽終正寢而丟失。
那麼DNA能不能當做硬碟來存儲數據信息呢?答案是,可以的。
DNA絕對是這個星球上最古老的生命信息存儲工具,同樣也可以作為數據信息的存儲介質,且存儲密度和使用壽命要遠遠超出現有的磁碟式的存儲方案。因此,DNA存儲,正在被人類視為數據存儲的未來,成為拯救人類數據存儲危機的最好的替代方案。
DNA存儲具體是怎麼做到的呢?現在發展到那一階段?商用的話還有哪些阻礙?這需要我們一一解答。
在了解DNA存儲是如何工作的之前,我們簡單了解下磁存儲和光存儲這兩種現有的解決方案的原理。
磁存儲的原理就是在金屬材料上塗上磁性介質,在通電的情況下形成電磁效應,可以進行存儲和表達0101的二進制信息。磁存儲的硬碟的優點是錄入和讀取的速度快,缺點是與體積重量相比,數據密度較低。經過60年發展,大概可以在3.5英寸大小的硬碟驅動上存儲3TB數據。
光存儲的原理是將數字編碼的視頻和音頻儲刻錄在光碟表面的凹槽中,再通過激光將這些凹槽中的數據讀取出來,進行轉存或播放。當前,光存儲也正在經歷存儲的極限。因為想要存下更多的數據,凹槽就必須越小、越緊湊,要求激光的精度也越高。目前,單層藍光光碟能夠保存 25GB 以上的信息,另一種紫外線激光如果研製成功,其光碟容量可以達到500GB的容量。
相對於磁存儲和光存儲而言,DNA存儲有哪些優勢?
首先,就是節約空間。但這些單層平鋪式的存儲方式,比起DNA的雙螺旋立體結構來說,其存儲量就有了多個數量級的差距。DAN本身的物理體積極小且又是立體結構,單位空間的數據密度非常高。舉個簡單的例子,1克DNA不到指尖上一滴露珠大小,卻能夠儲存700TB的數據,相當於1.4萬張50GB容量的藍光光碟,或233個3TB的硬碟(差不多151KG重)。
再則,非常節能。現有存儲方式,比如說一個數據中心,要消耗大量的單晶硅,還要消耗大量的電。而DNA物質只需保存在陰涼、乾燥的地方就可以,基本不需要額外的人工維護。就算需要把DNA冷凍起來,消耗的資源和能源也幾乎可以忽略不計。
此外,最重要的一點就是,保存時間非常久。現在高密度的存儲器都會隨著時間推移而衰減,能存儲時間最長的工具是磁帶,其壽命也就50年,其他的存儲器壽命更短。比較而言,DNA則保質期就以百年計算了,如果將其冷凍起來,能保存幾千甚至上萬年。
看來人類文明的拯救方案有了,但DNA存儲到底是如何做到的呢?
眾所周知,DNA由四種含氮鹼基——A、T、C和G互補配對構成,科學家將腺嘌呤(A)、鳥嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)分別賦予二進制值(A和C=0 ,G和T=1),隨後通過微流體晶元對基因序列進行合成,從而使該序列的位置與相關數據集相匹配。這樣就把這些鹼基對編碼成1和0的組合,就可以用DNA的序列信息來表達二進制的語言了。
當每次將二進制語言寫進DNA序列當中,就可以把「DNA硬碟」放到低溫環境中進行保存。而需要讀取數據的時候,只用對目標DNA進行測序,將鹼基對還原成二進制編碼,再完成解碼,就可以還原為我們常見的數據了。
原理是非常簡單,但科學家是如何做到的呢?這就要簡單回顧下DNA存儲技術的發展史了。
最先想到這一方法的是一位藝術家Joe Davis,他在1988年與哈佛研究人員合作,把一個取名為Microvenus(小維納斯)的7*5像素矩陣的照片,轉化成35個鹼基的DNA序列,插入到大腸桿菌里,第一次把不屬於自然演化的信息寫進了在DNA當中。
(Microvenus代表女性和地球)
2010年,美國合成生物學家克雷格•文特爾((Craig Venter)帶領研究團隊化學合成了整個支原體基因組DNA,取名為「辛西婭(Synthia)」,並以「自娛自樂」的方式將課題研究者的名字、研究所網址和愛爾蘭詩人詹姆斯的詩句等信息編碼進新合成的DNA中。
2011年,哈佛大學的合成生物學家喬治·丘奇(George Church)和加州大學的瑟里·庫蘇里(Sriram Kosuri)領導的團隊以及約翰•霍普金斯大學的基因組專家高原(Yuan Gao)首次進行了概念證明性實驗。團隊使用短DNA片段編碼了一本丘奇的659KB數據的書。
2013年,歐洲生物信息研究所(EBI)的尼克•高德曼(Nick Goldman)和他的研究團隊也成功地將包括莎士比亞十四行詩和馬丁•路德•金「我有一個夢想」的演講片段、一篇沃森和克里克DNA雙螺旋論文副本等5個文件編寫進了DNA片段里當中。739KB數據成為當時最大的DNA存儲文件。
2016年,微軟和華盛頓大學又利用DNA存儲技術完成了約200MB數據的存儲,成為DNA信息存儲技術的一個飛躍。
2017年7月,《自然》雜志發表了哈佛大學醫學院的賽斯•希普曼(Seth Shipman)和喬治·丘奇合作的一項活體DNA存儲的研究。他們把一部130年前的黑白電影《奔跑中的馬》存在了大腸桿菌的DNA上。雖然大腸桿菌體內有一段「奇怪的DNA」,不僅能夠正常生存,還可以正常遺傳,每次繁衍都是一次數據復制。而且存儲在基因組中的電影,在每一代大腸桿菌中也都完整無缺地保存下來了。
但因為細胞的復制、分裂以及死亡,會造成信息出錯的風險,未來數據安全,大多數情況下存儲信息的DNA都是以DNA乾粉的形式存在,活體細胞存儲的研究轉向合成DNA存儲。
同一年,哥倫比亞大學和紐約基因組中心在《科學》雜志發表了一項稱為「DNA噴泉」演算法高效的DNA存儲策略。這項技術展示了最大化利用DNA的存儲潛力,成功將海量信息壓縮至DNA的四個鹼基,即為每個DNA編碼1.6比特(bits)的數據,比之前多存儲了60%的信息,逼近理論極限(1.8比特)。該方法能夠將215PB數據存儲在一克DNA中,相當於2.2億部電影。
2018年,愛爾蘭沃特福德理工學院(WIT)研究人員開發出一種新型DNA存儲方法,可在1克大腸桿菌DNA中存儲1ZB的數據。
2019年,丘奇團隊又在《科學》期刊上發表了一項實驗結果。他們將丘奇的一本大約5.34萬個單詞《再生:合成生物學將如何改變未來的自然和自己》的書,以及11張圖片和一段Java程序,編碼進不到億萬分之一克的DNA微晶元,再成功利用 DNA 測序來閱讀這本書。
這些科研的快速發展也意味著DNA合成技術(數據寫入)和DNA測序技術(數據讀取)正走向成熟。但同時,DNA編碼過程仍然存在著存儲/讀取速度和成本等問題,DNA存儲離商業化還在路上。
在實驗室里,看起來DNA存儲並不復雜,但是在商業化上面,仍然還面臨著一些問題。
首先,存儲和讀取的速度都很慢。DNA存儲設備的訪問速度很慢,存取也很費時間。相比較磁碟存儲的電磁信號,DNA合成卻要依賴於一系列化學反應。用磁碟寫入200MB數據,不用1秒,用DNA合成差不多得需要3周的時間。
其次,DNA介質不能覆蓋和重寫。在DNA里,一旦把信息存進去,一般來說不能修改。想讀取這個文檔,需要把全部信息完全測序出來再轉碼。
第三,數據存儲的准確性有待提高。目前DNA測序時的重復讀取導致讀錯概率較大。
第四,隨機讀寫困難。目前DNA合成技術無法一次性產生較長的DNA分子,只能合成眾多的短片段。這使得在眾多DNA小片段組成的混合物當中,快速調取特定數據存在困難。
最後,也是最重要的,DNA存儲成本太高了。比如目前DNA存儲200MB數據,需要耗資80萬美元,而用電子設備,成本連1美元都不到。
但正如上面所說,如果放到更長的時間尺度上和數據存儲空間壓力下,DNA具有的大存儲密度、高節能環保、超長穩定性的獨特優勢就顯現出來了。只要隨著存儲和讀取技術的發展,DNA編碼和測序的效率提升,成本大幅下降,DNA存儲離商業化應用也就不遠了。
那麼,現在在商業化上有哪些進展呢?
在2015年,微軟公司和華盛頓大學合作發表了一個成果,採用定點讀取信息,也就是給一個長長的DNA鏈里加入一些追蹤標記。這些類似索引機制的標記,可以不用每次等測序完整DNA長鏈,就能選取合適的標記進行讀取。
2018年,讀取技術又實現突破,微軟研發了「納米孔」讀取技術,讓 DNA 介質列能擠過一個很小的納米孔而讀取其中每個 DNA 鹼基。這一技術讓大大縮小了讀取設備的空間開支,一個手掌大小的 USB 設備就能進行讀取,但讀取速度在每秒幾KB左右,可以說仍然相當慢。
2019年3月,微軟團隊在《自然》雜志發表一項新的進展,他們開發了世界上第一個自動DNA存儲介質。相比較於手動操作進行DNA的合成和測序,能夠自動化方式進行DNA編解碼才是未來商業化的出路。
另外,關於DNA存儲和讀取時長以及成本的問題,一家2016年成立的美國初創公司Catalog也正試圖嘗試解決。
去年,Catalog將一共16G的維基網路英文版文本存儲在了一個DNA分子上。他們使用了一台DNA書寫器設備,以4Mbps的速度在DNA中記錄這些數據。這意味著在一天內可以記錄125GB,大約相當於高端手機可以存儲的容量。這一速度已經是之前研究所存儲速度的三倍。
目前,Catalog使用了由20到30個鹼基對長預制合成DNA鏈,通過酶嵌套在一起,可以存儲更多的數據。這些片段的排列就像英語使用26個字母一樣,理論上可以創造出無數的組合。據Catalog估計,未來進行1MB數據DNA存儲成本將不到0.001美分。
當然,如果未來這家創業公司真的能夠將成本大幅降下來,那麼確實有可能為DNA數據存儲的商業化鋪平道路。
在2019年,《科學美國人》與世界經濟論壇聯合發布的當年全球十大新興技術中, DNA數據儲存技術名列其中。
可以預見,磁存儲和光存儲方式在未來一段時間仍將占據數據存儲方式的主流。不過,即使我們不會出現地球末日這種極端情況,因為近幾年數據激增,人類也正面臨數據存儲空間不足的嚴峻問題。同時,數據存儲需求激增,帶來的是硅晶片使用量的激增,以及由此引發的環境污染問題、水資源和能源消耗等問題。
DNA存儲技術的實現,一定程度將緩解傳統存儲的容量問題,並大幅減少電子元件和能源的消耗。