當前位置:首頁 » 編程語言 » pythonmpi

pythonmpi

發布時間: 2022-08-10 17:59:27

1. R 和 python 用於統計學分析,哪個更好

總的概括:R主要在學術界流行,python(numpy scipy)在工程方便比較實用。

R是S(Splus)的開源版本,或者下一代。發源地在紐西蘭奧克蘭。這個軟體的統計背景很濃烈。我這里濃烈的意思是,如果你不熟習統計知識(歷史)的話,R的幫助文檔看起來是很累的。由統計背景的人開發。R的維護組叫CRAN-R。在生物信息方便,有個叫bioconctor的組織,裡面有很多生物信息方面可以用的軟體包,他們有一套自己維護package系統。

Python是個綜合語言(這里特指指CPython解釋器),numpy scipy是數值計算的擴展包,pandas是主要用來做數據處理(numpy依賴),sympy做符號計算(類似mathematica?)此外還有一些不太成熟的包如sciki learn,statistical models。成熟度不如R。但是已經到了可用的水平了。是讀計算機的人寫的統計包。ipython 更新到1.0以後,功能基本完善,其notebook非常強大(感覺就像mathematica)而且還是基於web,在合作分享方面非常好用。

性能:
大家都說R慢,特別是CS的人。其實這里主要是兩點:一個R裡面數組的調用都是用復制的,二是Rscript慢。三是處理大數據慢。如果R用的好的話,R是不太慢的。具體來說就是Rscript用的少,多用命令,跑點小數據。這樣的話,實際在跑的都是背後的fortran和C庫。他們都有快二三十年歷史了。可謂異常可靠,優化得不能再優化了(指單線程,如果去看源代碼揮發先許多莫名的常數,永用了以後精度高速度快!)。比如一個自己編寫一個R腳本,loop套loop的那種,那真是想死的心都會有。外加一點,R處理文本文件很慢!

Python歸根揭底還是個有解釋器的腳本語言,而且有致命傷——GIL,但python最難能可貴的就是它很容易變得更快。比如pypy,cython,或者直接ctypes掛C庫。純python寫個原型,然後就開是不斷的profiling和加速吧。很輕易可以達到和C一個數量級的速度,但是寫程序、調試的時間少了很多。

並行計算:
R v15 之後有了自帶的parallel包,用挺輕松的。不過其實就是不停的fork,或者mpi,內存消耗挺厲害的。parSapply,parApply什麼的,真是很好用。

Python雖然有GIL——並行計算的死敵,但是有multiprocessing(fork依賴) ,是可以共享數據的什麼的,估計內存消耗方面比R好點,數據零散的話overhead很多。到了MPI的話,mpi4py還是挺好用的。用cython的話結合openmp可以打破GIL,但是過程中不能調用python的對象。

學習曲線:假設什麼編程都不會的同學。
R一開始還是很容易上手的,查到基本的命令,包,直接print一下就有結果了。但是如果要自己寫演算法、優化性能的時候,學習難度陡增。

Python么,挺好學的,絕大多數的幫助文檔都比R好了許多。有些包用起來沒R方便。總的來說深入吼R陡。

擴展資源:
基本上新的統計方法都會有R的package,安裝實用都不麻煩。但是基本上都是搞統計的人寫的計算機包。所以效能上可能有問好。比較出名的有兩個包的管理網站,cran-r 和bioconctor。 所以搞生化的估計R用起來很方便。

python的統計計算包們比R少,多很年輕,還在不斷的開發中。優於是計算機人寫的統計包,用起來的時候要多漲個心眼。

畫圖:
R自帶的那些工具就挺好用了,然後還有ggplot這種非常優美的得力工具。

python 有matplotlib,畫出來效果感覺比R自帶的好一些些,而且界面基於QT,跨平台支持。可能是R用得多了,pyplot用起來還是不太順手,覺得其各個組建的統一性不高。

IDE:
Rstudio非常不錯,提供類matlab環境。(用過vim-r-plugin,用過emacs + ess現在用vim。)

windows 下有python(x,y) 還有許多商業的工具。(本人現在的emacs環境還不是很順手~)

建議:
如果只是處理(小)數據的,用R。結果更可靠,速度可以接受,上手方便,多有現成的命令、程序可以用。

要自己搞個演算法、處理大數據、計算量大的,用python。開發效率高,一切盡在掌握。

ps:盲目地用R的包比盲目的地用python的包要更安全。起碼R會把你指向一篇論文,而python只是指向一堆代碼。R出問題了還有論文作者、審稿人陪葬。

2. 為什麼Python適合科學計算

python做科學計算的特點:
1. 科學庫很全。
科學庫:numpy,scipy。作圖:matplotlib。並行:mpi4py。調試:pdb。
2. 效率高。
如果你能學好numpy(array特性,f2py),那麼你代碼執行效率不會比fortran,C差太多。但如果你用不好array,那樣寫出來的程序效率就只能呵呵了。所以入門後,請一定花足夠多的時間去了解numpy的array類。
3. 易於調試。
pdb是我見過最好的調試工具,沒有之一。直接在程序斷點處給你一個截面,這只有文本解釋語言才能辦到。毫不誇張的說,你用python開發程序只要fortran的1/10時間。
4. 其他。
它豐富而且統一,不像C++的庫那麼雜(好比linux的各種發行版),python學好numpy就可以做科學計算了。python的第三方庫很全,但是不雜。python基於類的語言特性讓它比起fortran等更加容易規模化開發。

python和老牌科學計算語言fortran相比,有著眾多的優勢,如果能用f2py接合兩者,那是極好的。

3. 為什麼Python適合科學計算

原因大約有以下幾點:

1. Python的語法簡單,這對很少接觸編程的搞學術老師的福音。

2. Python相較於其他語言有更豐富的模塊,比如科學計算的numpy。

3. Python越來越流行。

Python(英語發音:/ˈpaɪθən/), 是一種面向對象、解釋型計算機程序設計語言,由Guido van Rossum於1989年底發明,第一個公開發行版發行於1991年,Python 源代碼同樣遵循 GPL(GNU General Public License)協議。

Python語法簡潔而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。

常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。需要注意的是在您使用擴展類庫時可能需要考慮平台問題,某些可能不提供跨平台的實現。

它常被昵稱為膠水語言,它能夠很輕松的把用其他語言製作的各種模塊(尤其是C/C++)輕松地聯結在一起。常見的一種應用情形是,使用python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫。比如3D游戲中的圖形渲染模塊,速度要求非常高,就可以用C++重寫。

4. python能做什麼科學計算

python做科學計算的特點:1. 科學庫很全。(推薦學習:Python視頻教程)
科學庫:numpy,scipy。作圖:matplotpb。並行:mpi4py。調試:pdb。
2. 效率高。
如果你能學好numpy(array特性,f2py),那麼你代碼執行效率不會比fortran,C差太多。但如果你用不好array,那樣寫出來的程序效率就只能呵呵了。所以入門後,請一定花足夠多的時間去了解numpy的array類。
3. 易於調試。
pdb是我見過最好的調試工具,沒有之一。直接在程序斷點處給你一個截面,這只有文本解釋語言才能辦到。毫不誇張的說,你用python開發程序只要fortran的1/10時間。
4. 其他。
它豐富而且統一,不像C++的庫那麼雜(好比pnux的各種發行版),python學好numpy就可以做科學計算了。python的第三方庫很全,但是不雜。python基於類的語言特性讓它比起fortran等更加容易規模化開發。
數值分析中,龍格-庫塔法(Runge-Kutta methods)是用於非線性常微分方程的解的重要的一類隱式或顯式迭代法。這些技術由數學家卡爾·龍格和馬丁·威爾海姆·庫塔於1900年左右發明。
龍格-庫塔(Runge-Kutta)方法是一種在工程上應用廣泛的高精度單步演算法,其中包括著名的歐拉法,用於數值求解微分方程。由於此演算法精度高,採取措施對誤差進行抑制,所以其實現原理也較復雜。
高斯積分是在概率論和連續傅里葉變換等的統一化等計算中有廣泛的應用。在誤差函數的定義中它也出現。雖然誤差函數沒有初等函數,但是高斯積分可以通過微積分學的手段解析求解。高斯積分(Gaussian integral),有時也被稱為概率積分,是高斯函數的積分。它是依德國數學家兼物理學家卡爾·弗里德里希·高斯之姓氏所命名。
洛倫茨吸引子及其導出的方程組是由愛德華·諾頓·洛倫茨於1963年發表,最初是發表在《大氣科學雜志》(Journal of the Atmospheric Sciences)雜志的論文《Deterministic Nonperiodic Flow》中提出的,是由大氣方程中出現的對流卷方程簡化得到的。
這一洛倫茨模型不只對非線性數學有重要性,對於氣候和天氣預報來說也有著重要的含義。行星和恆星大氣可能會表現出多種不同的准周期狀態,這些准周期狀態雖然是完全確定的,但卻容易發生突變,看起來似乎是隨機變化的,而模型對此現象有明確的表述。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python能做什麼科學計算的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

5. python為什麼適合大數據

因為方便啊。
在大數據面前,用什麼語言開發,執行起來都需要很長時間,都是慢。
那麼,執行速度方面已經沒有意義了,寫起來舒服的好處就凸顯出來了。
試想一下,對於一個大數據任務,你用C寫的程序要跑兩個小時,別人用python寫的要跑四個小時,沒人會盯首屏幕兩個小時,所以一般都會晚上下班時開始跑,第二天早上來看結果。那麼,對於一個晚上的時間來說,兩個小時和四個小時,是沒有差別的,第二天早上你都一樣可以看到結果。
在這種情況下,python的方便靈活就比C的艱深晦澀有吸引力了。

6. Python 適合大數據量的處理嗎

python可以處理大數據,python處理大數據不一定是最優的選擇。適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。

python的優勢不在於運行效率,而在於開發效率和高可維護性。針對特定的問題挑選合適的工具,本身也是一項技術能力。

Python處理數據的優勢(不是處理大數據):

1. 異常快捷的開發速度,代碼量巨少

2. 豐富的數據處理包,不管正則也好,html解析啦,xml解析啦,用起來非常方便

3. 內部類型使用成本巨低,不需要額外怎麼操作(java,c++用個map都很費勁)

4. 公司中,很大量的數據處理工作工作是不需要面對非常大的數據的

5. 巨大的數據不是語言所能解決的,需要處理數據的框架(hadoop, mpi)雖然小眾,但是python還是有處理大數據的框架的,或者一些框架也支持python。

(6)pythonmpi擴展閱讀:

Python處理數據缺點:

Python處理大數據的劣勢:

1、python線程有gil,通俗說就是多線程的時候只能在一個核上跑,浪費了多核伺服器。在一種常見的場景下是要命的:並發單元之間有巨大的數據共享或者共用(例如大dict)。

多進程會導致內存吃緊,多線程則解決不了數據共享的問題,單獨的寫一個進程之間負責維護讀寫這個數據不僅效率不高而且麻煩

2、python執行效率不高,在處理大數據的時候,效率不高,這是真的,pypy(一個jit的python解釋器,可以理解成腳本語言加速執行的東西)能夠提高很大的速度,但是pypy不支持很多python經典的包,例如numpy。

3. 絕大部分的大公司,用java處理大數據不管是環境也好,積累也好,都會好很多。

參考資料來源:網路-Python



7. 問一下Python里的numpy的正確讀法是什麼

numpy讀法是:英['nʌmpi],NumPy是Python中科學計算的基礎包。

它是一個Python庫,提供多維數組對象,各種派生對象(如掩碼數組和矩陣),以及用於數組快速操作的各種常式,包括數學邏輯,形狀操作,I / O離散傅立葉變換,隨機模擬等等。

NumPy包的核心是ndarray對象。這封裝了同構數據類型的n維數組,許多操作在編譯代碼中執行以提高性能。

NumPy數組和標准Python序列之間有幾個重要的區別:

1、NumPy數組在創建時具有固定大小,與Python列表(可以動態增長)不同。更改ndarray的大小將創建一個新數組並刪除原始數組。

2、NumPy數組中的元素都需要具有相同的數據類型,因此在內存中的大小相同。例外:可以有(Python,包括NumPy)對象的數組,從而允許不同大小的元素的數組。

3、NumPy數組有助於對大量數據進行高級數學和其他類型的操作。通常,與使用Python的內置序列相比,這些操作的執行效率更高,代碼更少。

4、越來越多的基於Python的科學和數學軟體包正在使用NumPy數組;雖然這些通常支持Python序列輸入,但它們在處理之前將這些輸入轉換為NumPy數組,並且它們通常輸出NumPy數組。

8. 有沒有簡單的中文python的openMP和MPI教程

MPI(MPI是一個標准,有不同的具體實現,比如MPICH等)是多主機聯網協作進行並行計算的工具,當然也可以用於單主機上多核/多CPU的並行計算,不過效率低。它能協調多台主機間的並行計算,因此並行規模上的可伸縮性很強,能在從個人電腦到世界TOP10的超級計算機上使用。缺點是使用進程間通信的方式協調並行計算,這導致並行效率較低、內存開銷大、不直觀、編程麻煩。

OpenMP是針對單主機上多核/多CPU並行計算而設計的工具,換句話說,OpenMP更適合單台計算機共享內存結構上的並行計算。由於使用線程間共享內存的方式協調並行計算,它在多核/多CPU結構上的效率很高、內存開銷小、編程語句簡潔直觀,因此編程容易、編譯器實現也容易(現在最新版的C、C++、Fortran編譯器基本上都內置OpenMP支持)。不過OpenMP最大的缺點是只能在單台主機上工作,不能用於多台主機間的並行計算!

如果要多主機聯網使用OpenMP(比如在超級計算機上),那必須有額外的工具幫助,比如 MPI + OpenMP 混合編程。或者是將多主機虛擬成一個共享內存環境(Intel有這樣的平台),但這么做效率還不如混合編程,唯一的好處是編程人員可以不必額外學習MPI編程。

9. 新司機求助 python安裝mpi4py模塊時出現

1、下載python安裝包https://www.python.org/ftp/python/3.5.1/python-3.5.1-amd64.exe 當然,你也可以根據你的需要下載不同版本的python。 2、雙擊安裝程序python-X.X.X.msi 3、選擇Install for all users,點擊下一步 4、選擇安裝目錄,Python...

熱點內容
怎麼用紙做豌豆解壓玩具 發布:2022-09-29 04:39:17 瀏覽:731
雲存儲播放時間表 發布:2022-09-29 03:58:31 瀏覽:598
新英朗4缸買哪個配置劃算 發布:2022-09-29 03:51:54 瀏覽:122
紅旗5配置怎麼選 發布:2022-09-29 03:44:21 瀏覽:887
linux安裝maven 發布:2022-09-29 03:29:18 瀏覽:595
吉利星瑞豪華天窗版有什麼功能配置 發布:2022-09-29 03:20:28 瀏覽:822
伺服器固定ip和彈性ip一起用 發布:2022-09-29 02:40:49 瀏覽:509
gpioc語言 發布:2022-09-29 02:34:40 瀏覽:958
h乚c語言 發布:2022-09-29 02:34:39 瀏覽:410
迷你世界體驗服正式服密碼是多少 發布:2022-09-29 02:21:19 瀏覽:419